News

Nokia’s Jadoul on keeping miners safe amid COVID-19

Posted on 14 Aug 2020

Workplace safety is a major objective of every mining company on the planet, but with the COVID-19 pandemic, for the first time perhaps, the primary danger may simply be getting too close while talking to our fellow team members, Marc Jadoul*, Strategic Marketing Director at Nokia, says.

In the mining industry, we are going to have to adapt our business practices to accommodate the current pandemic, and we have to be better prepared for similar events in the future. The pandemic has led to a re-thinking of certain safety protocols, procedures and personal protection, and it is accelerating the adoption of recent innovations that will improve workplace safety in other ways as well.

As the world has re-opened the economy, organisations such as the Center for Disease Control (CDC) in the US and the World Health Organization (WHO) have published recommendations for how to operate manufacturing and other business operations while still practicing social distancing and other aspects of workplace safety. These include having office employees telework where possible, staggering shifts to reduce the number of workers using lunch, break and washrooms at the same time, increasing physical space between employees in the workplace, wearing masks and even downsizing operations if necessary.

Given COVID-19’s ability to be spread by individuals who do not show symptoms, it is generally acknowledged that tracking contacts will be a key way to identify those who might have been exposed to a sick employee. Knowing the cost to the business of having to shut down a facility due to illness, management will need to work with public health authorities to implement practices that allow for the quick identification of suspected contacts, allow for testing and quarantine of workers in the case of an outbreak in their operation and, in some jurisdictions, be able to show compliance with these practices.

Marc Jadoul, Strategic Marketing Director at Nokia

The technologies needed to do this are not so far away. In fact, they already exist in industries where operating environments have residual risks or require robust control measures in ways that are similar to what will be needed to protect people from contracting the virus. Some of these practices have already been implemented in mines as well as nuclear facilities and high-tech chip fabricators. With some adaptation, it is not hard to see how these technologies can be adapted more broadly to make the mine workplace of the future nearly virus-free.

From a larger safety management perspective, the ultimate goal is to create a real-time, dynamic picture of what is happening with people, assets and environmental conditions at all times – what is known as ‘situational awareness’. It is crucial for conducting forensic analysis to understand the pattern of interactions and identify possible transmission paths so as to limit exposure and trigger remediation protocols, including testing and quarantining. Much of this already exists, but simply needs to be adapted to the current outbreak.

The ultimate objective of situational awareness is having 360° visibility of people, assets, infrastructure and environmental conditions. Because what you don’t see, you can’t manage. Which is important, not only for saving lives, but also for preventing productivity losses and increasing operational efficiency.

This full digital awareness of everything going on in the workplace is the main thrust of Industry 4.0, which brings together several technology streams: low-powered IoT sensors, artificial intelligence (AI) and machine learning, edge computing and next-generation wireless connectivity. These technologies combine to allow for the automation of repetitive processes, improved efficiency of operations, preventative maintenance of assets, quality control and enhanced situational awareness.

Applying these technologies to deal with COVID-19 will help to solve many of the new workplace constraints identified above. For instance, there are types of digital smart personal protective equipment (PPE) that incorporate wearable sensors and communications devices. They communicate with the operations control centre and could be used to trace employee movements, enforce geo-fenced areas deemed too dangerous for entry, or sense environmental contaminants and warn employees who have had excessive exposure to leave the area and follow decontamination protocols.

With some small adjustments, smart PPE and wearables could be deployed in many operations to enforce safe distancing between employees, using software to digitally map out work zones. They could warn employees when they are entering crowded areas or no-go zones. They could improve safety and efficiency during mustering and evacuation. And they could also enable management to forensically track past exposure of employees to those who have tested positive for the virus.

With the ongoing spread of COVID-19, mining companies need to find ways to enforce physical distancing among miners in order to keep operations open and miners safe

If sifting through location data for all the employees in a large mine sounds like a nightmare, this is where AI comes to the rescue. Sophisticated analytics software already exists that can analyse location data to look for correlations. It isn’t much of a stretch to adapt this software to smart PPE data that tracks worker movements in the facility – as long as unions and laws allow for it. This kind of software also exists to analyse video footage from CCTV cameras. All of this analysis can be used to trace infection vectors and to re-assure health authorities that protocols are being enforced on the job site.

One of the important enablers of Industry 4.0 use cases is the existence of highly reliable, secure wireless connectivity. The key to end-to-end awareness of operations is ubiquitous connectivity. Because of privacy concerns, that connectivity should be very secure. To support video and the large amount of data that can be generated within a fully automated facility, it also has to have bandwidth capacity as well as be able to support low latency edge computing. Geo-positioning and geo-fencing services for employees and mobile machines need more precise coordinates than can be provided by GPS – and need to work underground and in-building as well as on surface.

Delivering all these essential capabilities is fortunately available with today’s 4.9G/LTE and tomorrow’s 5G industrial wireless networks. Early generation wireless technologies, such as Wi-Fi, were designed for connectivity to best-effort networks. They are not highly reliable, secure or capable of providing mobility and geo-positioning services. Cellular-based 4G services, on the other hand, have been used in public mobile networks for a decade and have never been compromised. 5G is designed to be even more secure and has a number of features, like ultra-low latency, that are specifically intended for industrial automation use cases.

COVID-19 is likely to be a reality we have to live with for several years. If we are lucky and develop a vaccine quickly, it may be a short-term problem. But the scientists have been warning us about the possibility of pandemics of this nature for decades. This will not be the last. The good news is that the same Industry 4.0 technologies that are transforming our workplaces can be harnessed in this fight. Industrial IoT, edge computing, AI/machine learning and industrial-strength wireless networking will play a key role in ensuring the safety of our workers and our ability to come out of this crisis stronger than before.

*Marc Jadoul leads Nokia’s marketing efforts for the mining industry, working with key stakeholders across the business to evangelise digital technologies for creating safer, more efficient and productive mines