Revolutionising operations through the ‘Connected Mine’ of the future

With mining operators under growing pressure to perform in the face of falling ore grades, the need to drill deeper in search of new resources and an industry-wide skills shortage, the ability to leverage reliable and flexible communication systems is growing in importance, writes Martin Killian*, IoT Solution Architect at Speedcast.

Leading mining operators have already started on a digital transformation, as they look to create the so-called ‘Connected Mine’. Building on the necessary communications required for every day workings of the mine with layers of applications and systems such as sensors and surveillance systems, this concept will transform their overall performance. In fact, the World Economic Forum forecasts that $425 billion of value will be added to the industry over the next five years through digitalisation.

As the industry looks to improve efficiency and worker safety, several technology trends have emerged – three of which we explore below:

Digital twins for optimised production

NASA introduced the concept of creating a digital replica of an asset or system to help enable operations, maintenance and repair of physical assets in space. When applied to mining, data from operations can be harnessed through different technologies to create a replica in which certain scenarios can be tested. Operators are beginning to adopt this technology at a rapid rate and are harnessing the benefits of eliminating errors and hazards before on-site implementation, while enabling the ultimate predictive maintenance to minimise downtime of any equipment.

Environmental monitoring for occupational health and safety

Using sensors, such as those which detect combustible gas levels, airflow velocity, and temperature variations for example, to check environments are safe to work in is not new. But the increasing use of sensors on a range of devices, such as when Radio Frequency Identification (RFID) technology is embedded into miner’s safety helmets, puts strain on the networks that support them.
When RFID readers are deployed within the mines, the connected mine then becomes aware of who is in different locations at a given time. This data can be combined with data from environmental sensors to identify exposure to a potentially hazardous condition. The key to extending the range and applications of environmental monitoring solutions is the introduction of new sensors and technology which are compatible with the wireless solutions being used.

Martin Killian, IoT Solutions Architect at Speedcast

Private LTE enabling big data connectivity

Unlocking the power of the connected mine takes more than just the technology involved – it requires a shift in connectivity. Due to the mission-critical communication in mines, any service must be reliable and able to flow at high volume with no interruptions. For years, the staple of on-site connectivity has been Wi-Fi supported by point-to-point microwave, but now LTE technology is being rapidly adopted, bringing advantages such as wider and deeper coverage, more predictable performance for multiple users, and military-grade security using SIM authentication and E2E encryption, as well as providing one network for all applications. It also provides a roadmap for future upgrades to 5G which will drive productivity to new heights with super-low latency and high bandwidth.

Mining operators must also consider integrating multiple communication technologies, which deliver high-performance connectivity to remote locations. Incorporating key elements such as multi-mode terminals, a dedicated global network and intelligence that identifies the best transmission routes and automatically switches services for best performance at lowest cost will deliver the best return.

Theory put into practice

One of the world’s largest gold mining company, Australia’s Newcrest Mining, collects data from over 100,000 sensors to create digital twins and to build predictive maintenance models. The company’s CIO estimated these data initiatives will have saved the company over $50 million in 2018. Being able to diagnose problems straightaway has also reduced machinery downtime at one of Hecla Mining’s operations in Canada and added an extra hour per day to its operations.

Huge advantages for efficiency were seen when Goldcorp (since acquired by Newmont) incorporated environmental monitoring remotely controlled underground ventilation at one of its mines in Canada. This created better control of potential ventilation hazards and more efficient energy usage, which saw its electrical consumption cut in half.

While a private LTE deployment by Telstra at the Lihir mine in Papua New Guinea has improved levels of safety, remote operation and automation thanks to the connection of equipment, such as excavators, bulldozers and excavators. The network’s reliability, speed and latency has delivered significant performance improvements and is designed to meet Lihir Gold Ltd’s long-term plan.

The future

Mining is an industry which will remain cyclical in nature as commodity prices, productivity levels and access to reserves change. However, the connected mine puts predictability within the grasp of operators, helping to make mines safer and more responsive to changes within the market. The deeper insights afforded to managers bring many benefits, which signal a bright future for the sector, by making best use of assets and employees and being able to best manage safety and environmental impacts.

*Martin Killian has more than 16 years in the satellite communications industry and is currently the IoT Solutions Architect at Speedcast.