BluVein, armed with its “dynamic charging” philosophy, is pitching a different option to miners looking to electrify their underground operations over the long term.
While battery-electric machines such as light utility vehicles, mobile mining support equipment, and low-to-medium tonnage LHDs and trucks have spread throughout major mining hubs like North America, Europe and Australia, the next step is electrifying the machines with the heaviest duties in the underground mining space.
If the sector settles for battery-electric options in this weight class for uphill haulage scenarios, they will need to leverage bigger batteries, more battery swapping or some additional charging infrastructure to power vehicles up ramp.
Two of the leading mining OEMs in the electrification space are considering all the above.
Sandvik, through its wholly owned Artisan Vehicles subsidiary, is developing a 65 t payload battery-electric haul truck with a bigger battery than its 50-t vehicle (the Z50) that will see quick battery swapping employed on uphill hauls, while Epiroc is weighing the potential of fully-electric operation with a battery and trolley combination in its larger payload class trucks.
BluVein is intent on laying the groundwork for multiple OEMs and mining companies to play in this space without the need to employ battery swapping or acquire larger, heavier batteries customised to cope with the current requirements placed on the heaviest diesel-powered machinery operating in the underground mining sector.
It is doing this through adapting charging technology originally developed by Sweden-based EVIAS for electrified public highways. The application of this technology in mining could see operations employ smaller, lighter battery-electric vehicles that are connected to the mine site grid via its Rail™ and Hammer™ technology and a sophisticated power distribution unit to effectively power electric motors and charge a vehicle’s on-board batteries.
This flexible technology is set for a trial later this year, with the company – a joint venture between EVIAS and Australia-based Olitek – already busy behind the scenes enlisting a number of funding partners to push forward with a collaborative pilot aimed at demonstrating the next generation of trolley assist technology.
With this aim in mind and knowledge of previous trolley projects at underground mines, IM put some questions to BluVein Founder, James Oliver.
IM: What input does Olitek provide within BluVein? Do they produce customised prototype battery-electric machines?
JO: BluVein is a new company formed through a partnership between EVIAS and Olitek. While we are a new venture, unlike traditional start-ups, BluVein is backed by two highly experienced long-standing companies and is seeking to enable the fully-electric mine of today.
The biggest need for electric mining vehicles is in heavy-duty load and haul applications on inclined roads. In this instance, batteries on their own are not up to the task – not even close. Dynamic charging is the game-changing technology that will enable fully-electric heavy-duty load and haul on inclined roads.
In the partnership, Olitek provides the mobile vehicle, robotics, electrical and mining environment expertise to enable BluVein to operate safely and reliably in a mining environment. BluVein is currently working with a number of mining vehicle OEMs to integrate the BluVein system to suit their on-board battery and motor architecture, enabling safe dynamic charging from a standardised slotted rail system.
The joint venture does not produce customised prototype battery-electric vehicles or battery machines, and we are vehicle OEM-agnostic; we are open to working with any battery-electric vehicle manufacturer enabling standardised dynamic charging.
IM: What companies are involved in the collaboration mentioned? What is the aim of this collaboration (timelines, goals, etc)?
JO: Currently we are not able to disclose which mining companies and vehicle OEMs we are working with – it will be revealed in the not-too-distant future. They are, however, a selection of very well-known major companies from Sweden, Canada and Australia. We are open to other like-minded, early adopters to join the BluVein collaboration.
Our aim is to commence building our industry-backed technology demonstration pilot site in Brisbane, Australia, by late 2021 in a simulated underground environment. This will involve a section of BluVein rail and at least one electric vehicle fitted with the BluVein hammer system to demonstrate dynamic charging whilst hauling loaded up an incline.
IM: What are your overhead systems (BluVein Rail) providing that your typical underground trolley systems are not providing? How does the infrastructure required compare with, say, what Vale has in place at Creighton and Coleman in Sudbury for its Kiruna trucks?
JO: Existing trolley assist systems that utilise exposed high voltage conductors cannot be used in many mining jurisdictions globally due to safety concerns and an inability to comply with mining regulations. This is particularly the case in underground mines where clearance above mobile fleets is limited. The BluVein rail system is unique as all high voltage conductors are safely housed within ingress protection (IP) rated slots. This effectively mitigates against risks of accidental contact by mining personnel or the vehicles.
The safe and standardised systems allow for the charging of a vehicle’s batteries whilst simultaneously powering the electric-drive motors. This gives a battery-electric vehicle almost unlimited range and eliminates the requirement for battery swapping, downtime and charge bay infrastructure requirements.
And BluVein Rail does not need to be installed in all parts of the mine – only in the heavy-duty cycle zones such as mine declines and pit ramps. When tramming/hauling on flat gradients, mining vehicles operate on their own internal batteries. This dramatically reduces the system installation complexity and installation cost. Where the BluVein Rail terminates, the vehicle automatically disconnects and reverts to its on-board batteries for power, without stopping.
Ease of maintenance is one of our focus points for BluVein. The BluVein system is developed to handle typical mining drive terrain conditions so no special maintenance is required to cater for conductor contact relative to the vehicle. Our BluVein Hammer, an all-terrain trolley, takes care of this. This provides the connection between the mobile machinery and the BluVein slotted rail. As the vehicle moves through an inclined underground tunnel or along a pit ramp, the Hammer maintains the electrical connection even over rough road conditions. Operator assist controls, such as smart auto connect and disconnect functionality, are also incorporated.
BluVein is the ‘next generation’ of trolley assist technology with all the benefits and none of the negatives of the old systems.
IM: How long and steep an uphill climb is required, on average, to make the business case work in the favour of BluVein technology over your typical battery-only system? When does the TCO equation tip in favour of your solutions over other trolley systems on the market?
JO: Typical battery systems are super high cost when you consider the full impact of charge bay infrastructure, numerous large operating batteries per vehicle and rapid battery life decay. BluVein, however, has a relatively low capital cost in comparison as it enables smaller, lighter and lower power on-board batteries to be used that never require swapping or static charging.
Therefore, from day one, the TCO for BluVein will likely be favourable compared to typical battery-only systems, regardless of haul length.
IM: Are BluVein Hammer or BluVein Rail already installed at mine sites around the world? What models of machines have they been integrated on?
JO: The underlying technology for the BluVein Rail and Hammer has been developed over the past 11 years with EVIAS for electrified highways. BluVein is the adaptation of this technology specific to the harsh conditions found within mining.
The BluVein system has been designed to suit nearly all current mining battery-electric vehicles so that a single BluVein Rail installed in a mine can power the entire fleet, even if that fleet is comprised of mixed OEM machinery.
A working EVIAS system has been installed in an open highway setting in Sweden, but no mining applications exist at this point. As mentioned, BluVein will have a pilot site underway by the end of 2021.
IM: Given a Volvo TA15 all-electric hauler is pictured on your website, are you also working with open-pit miners on this collaboration?
JO: BluVein is not just suited to underground applications, however, initially that is the focus given the urgency around eradicating diesel emissions and particulate matter and its carcinogenic properties.
BluVein has strong application in open-pit mining and in quarry environments to reduce greenhouse gas emissions and improve productivity and costs. The technology can leverage all the same advantages seen underground in open-pit applications. The bonus with underground is we have free infrastructure to hang the rail from.
A number of our partner mining companies are assessing the BluVein system for both surface and underground deployments.