Tag Archives: Barrick

CEEC Medal recipients recognised for pushing lower footprint mineral processing

Two standout research and field work contributions that have the potential to improve environmental, social and governance (ESG) performance across industry have been awarded the highly respected CEEC Medal for 2020.

Attracting a record 23 high-quality nominations from across the globe, the shortlisted Operations and Technical Research papers showcased exciting site improvements and innovative ideas for future technologies, according to the Coalition for Energy Efficient Comminution (CEEC).

Now in its ninth year, the CEEC Medal recognises the best published papers that raise awareness of comminution research findings, alternative comminution strategies and installed outcomes.

CEEC Director and Medal Evaluation Committee Chair, Dr Zeljka Pokrajcic, said this year’s nominations reflected industry trends to install renewables, consider embodied energy and emissions, and the continued embracing of technologies such as pre-concentration and coarse flotation.

“It’s rewarding to see how industry leaders and experts are collaborating to forge improvements that make good business sense and proactively improve efficiency,” Dr Pokrajcic said.

The 2020 recipients are:

Operations

Peter Lind and Kevin Murray of Newmont and Alan Boylston and Isaias Arce of Metso Outotec, (formerly Metso), for their paper titled, ‘Reducing Energy and Water Consumption through Alternative Comminution Circuits’. This was presented at the 7th SAG Conference in Vancouver, Canada, in 2019.

Technical Research

Dr Grant Ballantyne (pictured), for his paper titled, ‘Quantifying the Additional Energy Consumed by Ancillary Equipment and Embodied in Grinding Media in Comminution Circuits’. This was also presented at the 7th SAG Conference in Vancouver.

Dr Pokrajcic said the winning Operations paper from Newmont/Metso Outotec documents a successful miner/vendor collaboration on how to assess the comminution circuit options in a low energy and water environment.

The paper considers a typical case of a low grade, bulk tonnage copper-gold orebody in an arid climate (Chile, South America) with significant energy costs. It brings together important solutions – including energy-efficient comminution, ancillary equipment, preconcentration and flotation – and presents compelling economic comparisons.

CEEC CEO, Alison Keogh, said of the paper: “This global knowledge sharing offers real value for decision-making across the globe. The paper’s practical, systematic technology approach, which incorporates all-important financial analysis, has the potential to accelerate industry’s progress to deliver lower footprint minerals.”

The paper’s co-authors, Lind and Boylston, explained that the work was the result of collaboration between many innovative thinkers, with ideas and approaches built over many years.

“We wanted to make a difference, to bring technologies together to show that you can save energy, save water and save money as well. This was a group effort, not only by our extended teams at Newmont and Metso Outotec, but also involving Steinert and Scantech in working through how to apply technologies,” they said.

The CEEC Medal Evaluation Committee praised the winning Technical Research paper from Dr Ballantyne as being “an impressive approach to capturing and quantifying energy consumption of ancillary equipment and energy used to manufacture and transport grinding media”.

The paper shares insights on embodied energy using data collected from sites and presents results on the CEEC Energy Curves.

“The research presents a broader approach that considers the impacts of not just energy used in particle breakage but also embodied energy in the manufacture and transport of grinding media, and energy used in the operation of ancillary equipment such as conveyors and pumps,” Dr Pokrajcic said.

“Bringing this spotlight to embodied energy has strategic value. Many companies are including investigation of supply chain in their procurement decisions.”

Dr Ballantyne, previously a Senior Research Fellow at the Julius Kruttschnitt Mineral Research Centre (JKMRC), and now with Ausenco, noted that his work started in 2012, building on earlier concepts shared by industry at a CEEC workshop in Australia. These concepts were developed further following industry input at the 2015 SAG Conference in Canada.

“I also acknowledge the inspiration and collaboration of Chris Greet (Magotteaux), Evert Lessing (formerly Weir, now Metso Outotec), Malcolm Powell (formerly The University of Queensland) and Greg Lane (Ausenco) for contributing expert input and data to the work,” Dr Ballantyne said.

“New research ideas and collaboration with industry are key to industry innovation,” he said. “Support and mentoring from these suppliers as well as experts from Ausenco and The University of Queensland ensured these new ideas could be published for industry to progress thinking.”

In addition to the two CEEC Medals awarded in 2020, three publications received High Commendations.

High Commendations – Operations

Ben Adair, Luke Keeney, and Michael Scott from CRC ORE, and David King from Minera San Cristóbal operations, for their paper titled ‘Gangue rejection in practice – the implementation of Grade Engineering® at the Minera San Cristóbal Site’. This was presented at Physical Separation 2019, in Cornwall, United Kingdom.

This paper shares the prediction and outcomes of a Grade Engineering pilot at Sumitomo’s Minera San Cristóbal operations in Bolivia. The work identifies ore amenability and levers to optimise up-front rejection of gangue before processing.

Keogh said: “This approach highlights the scale of the opportunity for mining leaders to invest in unlocking hidden value for shareholders through productivity step-change while significantly reducing impact on the environment.”

High Commendations – Operations (continued)

Malcolm Powell, Ceren Bozbay, Sarma Kanchibotla, Benjamin Bonfils, Anand Musunuri, Vladimir Jokovic, Marko Hilden, Jace Young and Emrah Yalcin, for their article titled ‘Advanced Mine-to-Mill Used to Unlock SABC Capacity at the Barrick Cortez Mine’. This was presented at the 7th SAG Conference in Vancouver.

This work was a collaboration between three organisations: JKMRC at The University of Queensland’s Sustainable Minerals Institute, Barrick’s Cortez mine and JK Tech. It shares an advanced mine-to-mill approach that unlocks improved SABC production capacity at Barrick’s Cortez mine in Nevada, USA.

Dr Pokrajcic said the article was an excellent review of the dynamic between SAG and ball mills, illustrating how mine-to-mill, with the consideration of blast movement as well as fragmentation, and operation-wide optimisation could empower sites to identify and sustain long-term improvements.

“It highlights the opportunity of operationalising cooperative ore blend control to balance energy use across the milling circuit, reducing specific energy consumption while benefitting from increased production,” she said.

High Commendation – Technical Research

Paul Shelley and Ignacio Molina (Molycop) and Dimitrios Patsikatheodorou (Westgold Resources), for their paper titled ‘SAG mill optimisation insights by measuring inside the mill’. This was presented at the Procemin-Geomet Conference in Santiago, Chile, in 2019.

In a first for industry, this innovative approach aims to collect data from sensors inside the grinding balls within grinding mills, CEEC said. It brings potential application for high frequency measurement of temperature and impacts inside the mill.

Dr Pokrajcic said: “If this early work can be successfully commercialised and scaled up, it could bring new insights that link to operational and energy efficiency improvements.”

Keogh said nominations for the 2021 CEEC Medal were now open, and she encouraged the submission of relevant, ground-breaking articles from online events and industry presentations.

“Because of disruptions to physical events, we have extended the closing date for submissions to October 30, 2021.”

Details of the application process for the 2021 CEEC Medal can be found here.

Sandvik TH545i haul trucks, DL432i autonomous drill to join Barrick Hemlo fleet

Barrick’s Hemlo gold mine in Ontario, Canada, is lining up the arrival of a new Sandvik autonomous drill and eight Sandvik haul trucks as its underground-only contract miner strategy takes hold.

The company said it is expecting eight new Sandvik TH545i 45 t haul trucks to arrive on site in the near term.

These trucks moves more rock and material than its current fleet and are equipped with an ejector box, which means operators do not need to lift the box to dump material – it pushes it out the back – making it easier to work with in smaller areas, the company said.

“Let’s not forget to mention the reduction in emissions from this Tier 4 engine, improving worker safety and lessening the environmental impact,” the company added.

Earlier this week, a Sandvik DL432i fully autonomous drill arrived at Hemlo too. Its fully integrated software allows this machine to drill holes on its own, even between shift changes, according to Barrick.

“Engineers are now able to upload plans and designs for day-to-day operations,” the company said, adding that the cab is enclosed and comes with climate control to cool operators in warmer climates underground.

Late last year, Barrick said it would phase out the open-pit operation at Hemlo and move to an underground contract mining model as it looked to upgrade the mine to a Barrick Tier 2 asset. This saw Barminco appointed as the contract miner earlier this year.

Barrick trialling autonomous and battery-electric tech at North America mines

Barrick Gold’s automation and electrification efforts look to be gaining pace, with the leading gold miner revealing it has been testing out new technology at some of its operations in the US and Canada.

In its recently released annual report, Barrick said the first stage of a project designed to retrofit an autonomous system at its Carlin gold mine, in Nevada, had been completed successfully.

Matthew Majors, Open Pit Operations Superintendent at Carlin Surface, said in a presentation last month that multiple underground evaluation deployments, surface drilling OEM evaluation, and non-OEM surface production haulage options had been evaluated across the Barrick and Newmont jointly-owned Nevada Gold Mines business.

While the company didn’t provide any more details on the project, Barrick has previously leveraged ASI Mining’s OEM-agnostic autonomous solution at its jointly-owned South Arturo gold operation, also in Nevada. This saw the completion of a proof of concept (POC) using five haulage units “that have delivered over 5.5 Mt faster than any other similar POC in the industry”, Barrick said last year.

At Kibali, in the Democratic Republic of the Congo, which remains a world leader in underground automation with multiple autonomous machines operating on the same haulage level, the company recently completed a trial to use this technology on the mine’s production levels. This means a single operator can now control up to three machines acting semi-autonomously in different zones, Barrick said.

It added: “An additional system, which will provide real-time visibility of the underground operations, including personnel and equipment tracking, is currently being commissioned.”

And, lastly, on the electric vehicle front, the company said its Hemlo gold mine, in Ontario, Canada, has introduced a battery-powered development drill “as a first step towards establishing the potential of this new technology”.

Hemlo recently moved from a combined open-pit and underground owner-operated mine to an underground-only contract mining model as part of a plan to transition Hemlo into a Tier Two asset with a life of mine well into the future.

Barrick’s Turquoise Ridge gold operation is also evaluating new battery-electric technology, with the company confirming a battery-powered underground haul truck is being trialled at the mine.

GMG members devise mine automation guideline

The likes of Anglo American, BHP, Barrick Gold, Glencore, Newmont, Rio Tinto, Teck and Vale have collaborated on the Global Mining Guidelines Group’s (GMG) latest guideline on automation.

The Guideline for the Implementation of Autonomous Systems in Mining offers a broad view of the implementation of these systems, which are being used more and more frequently due to their potential for making the mining industry safer and more productive, according to GMG.

Christine Erikson, General Manager Improvement and Smart Business at Roy Hill, said the guideline “covers all aspects of operations, including people, safety, technology, engineering, regulatory requirements, business process and organisation models”. She added: “The guideline considers all perspectives in the industry, making it relevant and practical in implementation.”

The guideline provides a framework for mining stakeholders to follow when establishing autonomous mining projects ranging from single autonomous vehicles and hybrid fleets to highly autonomous fleets, GMG said. It offers guidance on how stakeholders should approach autonomous mining and describes common practices.

“More specifically, the publication addresses change management, developing a business case, health and safety and risk management, regulatory engagement, community and social impact, and operational readiness and deployment,” GMG said.

“There has been an incredible level of engagement in this project since its launch last year,” said Andrew Scott, Principal Innovator, Symbiotic Innovations, and GMG Vice-Chair Working Groups, who facilitated many of the workshops. “The industry interest reflects the growing importance and relevance of autonomous systems in mining and the industry’s need for a unified framework for mitigating risks and managing change while maximising the value of autonomy.”

Chirag Sathe, Principal, Risk & Business Analysis Technology at BHP – one of the project co-leaders alongside Glenn Johnson, Senior Mining Engineer, Technology at Teck – said the guideline is relevant even to those who have already embraced autonomy: “I would say that even though some mining companies have implemented autonomy, it hasn’t been a smooth ride and there are a number of lessons learned. This guideline would be a good reference material to everyone to look at various aspects while implementing autonomy. It is not meant to provide answers to every potential issue, but it at least may provide some guidance on what to look for.”

Erikson concurred, saying, “Roy Hill’s involvement has given greater insight into industry learnings that we have considered as part of our own autonomous projects.”

The guideline also promotes cooperation between the involved parties as a means of easing the implementation process, according to GMG. Andy Mulholland, GEOVIA Management Director at Dassault Systèmes, said: “Mining companies will need to rely heavily on their technology partners.” This guideline “sets down a great framework to be able to collaborate”, he added.

Sathe said: “As technology is moving very fast, guideline development also should keep pace with the change.”

As a result, the guideline will be reviewed and updated on a regular basis, according to GMG.

GMG said: “Although implementing autonomous systems creates new challenges, such as changes to the workforce and the workplace, their successful deployment adds definite value, with improved safety and efficiency and lower maintenance costs. As more operations move toward the application of these technologies, this guideline will be an invaluable asset.

Mark O’Brien, Manager, Digital Transformation at CITIC Pacific Mining, said the process of developing the guideline highlighted “just how much there is to factor into deciding whether to implement autonomy, whether you’re ready for it and what the journey is going to look like.

“Having this all captured in a single, well-considered document is a terrific resource.”

Barrick cuts waste, boosts reserves from modified bench steepening at Goldstrike

An alternative method of steeping the open-pit benchface at Barrick Gold’s Goldstrike mine in Nevada, US, has shown significant net benefits through a reduction in mined waste tonnes and an increase in gold reserves, according to a paper to be presented at the SME Annual Conference & Expo on Monday.

The paper, Steepening Of Inter-ramp Slopes On A Final Wall At The Goldstrike Open Pit, will be presented by Barrick Nevada’s Chief Geotechnical Engineer, Jeff Mattern.

Located on the Carlin Trend gold belt in north-eastern Nevada, the mine has produced over 43 Moz of gold during the past 30 years.  Mining at the Goldstrike open pit has seen its share of slope instabilities, according to Mattern. “In areas where slopes have remained stable, consideration has been made for potential slope steepening of final walls,” he said.

Looking to potentially employ steeper slopes for significant economic benefits, Barrick has taken the commonly used Modified Ritchie Criteria for catch bench width and adjusted it, “resulting in quantified, rock-specific formulas for bench width and rock fall berm placement”, Mattern said.

“The result is an interramp slope angle increase of 2° on a 300 m high slope, without the necessary purchases and procedural changes that would be required for pre-split drilling and blasting,” Mattern said. This occurs in Vinini, Rodeo Creek and Popovich rocks with benches 12 m in height.

The employment of this method has shown “significant” net benefits through a reduction in mined waste tonnes and an increase in gold reserves, he added. In fact, this exercise in a single layback, saw waste stripping decrease by around 9 Mt, while 35,000 oz of gold has been added to mine reserves.

Mattern concluded: “Ongoing monitoring of slope performance, slope design compliance, optimisation of operational practices, and collection of detailed geologic data can all help to provide the right information for potentially steeper slopes and significant economic benefit.”