Tag Archives: Brian Weller

Energy management to become ‘the’ mine electrification talking point

Running through the three halls at MINExpo 2024 in Las Vegas last month, the electrification theme was everywhere – numerous booths pulled in attendees with battery symbolism or, in some cases, actual electric machines; others presented new concepts, with variations of dynamic trolley being a particular talking point.

While it is clear there is a wider ‘electric’ offering coming to the market, it is also becoming apparent that the discussion must move on from individual electric machine capabilities to the wider infrastructure at hand and how to manage a site’s available energy constraints.

For IM this was crystallised during several meetings around the show, with the two notable examples coming from a discussion with Joachim Braun, Division President at ABB Process Industries, and a presentation from Brian Weller, Vice President of Electrification for Caterpillar.

Real eMine progress

“It is hard to imagine any company being able to sell an electric vehicle without an awareness of how this vehicle will affect a site’s energy balance,” Braun told IM on the final day of the three-day show in Las Vegas. “Part of the equation now is the power management system piece. No operation is going to tolerate a major drop in productivity with the introduction of these new vehicles and increased renewable energy generation.”

ABB has been aware of this for some time, using the backdrop of MINExpo 2021 to launch its eMine™ portfolio of fully integrated electrification and automation systems, covering mine to port.

IM Editor, Dan Gleeson (left), with Division President at ABB Process Industries, Joachim Braun (right)

The company is in the somewhat unique position of serving both OEMs and mine sites with this offering, with the most recent publicised agreements struck with the likes of Komatsu and Hitachi Construction Machinery in the former category, and Codelco and Antofagasta in the latter.

On the availability of renewable energy generation, Braun acknowledged the potential to carry out “power-hungry activities” during the day when solar irradiation might be highest in, say, Australia or Latin America, as one option to consider.

He also expected the introduction of new levels of autonomy and artificial intelligence to play key roles in making decisions on site based on planned activities and the energy required to carry those activities out.

“Whatever happens, there has to be an interaction with the fleet management side of things,” he added.

Stitching it together

Caterpillar is one of those companies looking to sell electric machines, as well as chargers, energy storage systems and other supporting electrical infrastructure, to the mining sector. As Weller made clear during a pre-MINExpo 2024 tour of the company’s Tucson Proving Ground and Tinaja Hills Demonstration and Learning Centre in Arizona, the OEM is working closely with key customers to explore the complexities of managing the power needed to keep electric sites running optimally.

“When we think about the energy balance here, it is not just about consuming energy; it is about where am I getting the energy, and how much and when I am getting this energy,” Weller said during a demonstration of the company’s electric site simulation and modelling capabilities.

This Caterpillar demonstration included a simulated customer site that had 26 battery-electric trucks being charged by six 4-MW stationary charging systems and eight 8-MW Dynamic Energy Transfer (DET) points.

Caterpillar wasn’t the only one showcasing such solutions at MINExpo, with Fortescue highlighting a 6 MW charger and Liebherr Power Rail also being featured. During IM’s conversation with Braun, a high power eMine FastCharge under development was mentioned, as was “more flexible solutions on trolley systems”.

All these new solutions – in addition to some of the existing ones on offer – are high consumers of power.

This was displayed in the simulation Weller played on screen in Arizona, where the site energy transfer capacity related to just the haulage fleet came in at 88 MW.

The energy transfer shown over a 4.5-hour period in this simulation swung from 70 MW capacity at the top end and 5 MW at the low end.

“That 65 MW swing is the equivalent of having a city of 40,000 people turn their light switches on and off,” Weller said for context. “That is the magnitude of the variation the site has to absorb.”

This is where the integration of electrification and autonomy are going to prove vitally important, according to Weller, and is where the “assignment engine” the company is developing, in tandem with its advanced simulation capabilities, is expected to come into the Cat® MineStar™ Fleet management system fold.

“When we look into the mine site of the future, and the idea of electrification and autonomy, it has to all be stitched together,” Weller said.

“We can’t have trucks stop because of a dead battery; we can’t have trucks back up on a haul route waiting for a charger. In some instances, you might be better off coming in for a charge right now – regardless of your state of charge – as in 10 minutes you might have 10 trucks lining up waiting to be charged. How do you know that? You have to tie it to the fleet management system. This enables you to know how much energy you need and how much energy you have to complete your next assignment.”

These tradeoffs will likely impact production, but having a system like the assignment engine Weller highlighted allows the site “to make that decision very dynamically”, he added.

Industry consensus

There were others talking up such integration around MINExpo 2024.

Oliver Weiss, Liebherr Mining Equipment SAS’ Executive Vice President, R&D, Engineering and Production, says control and command of zero emission mining technologies are included in the autonomous haulage system (AHS) the company has been working on with Fortescue.

“The fleet management assignment engine at the core of the AHS monitors fleet energy levels so that jobs and energy replenishment tasks can be assigned efficiently within zero emission fleets equipped with this system,” he said.

Komatsu’s new Modular ecosystem, which builds on the DISPATCH fleet management system, also has an expanding set of interconnected platforms and products built in. Included within this is a new app called “Replenish” to refuel and recharge mining equipment while minimising impacts to production.

Considering ABB and Komatsu recently signed a strategic collaboration agreement to, they said, “jointly develop and bring to market integrated solutions that will help move net-zero emissions for heavy industrial machinery a step closer to reality,” one would expect ABB’s expertise and technologies for automation and electrification to integrate into this new open platform from Komatsu.

It is becoming clear that the energy management paradigm will require mine sites of the future to have even more integrated workflows underlined by higher levels of autonomy.

And it is this understanding that will lead to an accelerated uptake of electric solutions from where the industry is today.

Cat’s Denise Johnson on solidifying the electrification solution set

In the leadup to this week’s MINExpo 2024, Caterpillar has been making headlines across the mining technology space with a string of announcements related to mine site electrification. IM got a chance to sit down with Caterpillar Resource Industries Group President, Denise Johnson, to talk through these and more.

The following Q&A picks up from a discussion Editorial Director, Paul Moore, had with Johnson and Brian Weller, Vice President of Electrification, in the leadup to MINExpo 2021, in Las Vegas.

IM: When comparing where the industry is now with the electrification trends and indicators seen just before MINExpo 2021, what do you view as the major energy sources for ultra-class haul trucks to allow miners to achieve some of their net-zero, scope one emission targets? Has your viewpoint changed over that three-year period?

DJ: I don’t think it has changed. Three years ago, we had a vision of the predominant choice for zero exhaust emission haul trucks being battery-electric. Three years later, that vision has been maintained.

You could argue that the battery chemistry has evolved over that time frame, but the expected solution set has broadly remained the same. If anything, we have been able to further validate battery-electric trucks as the optimal choice over that three-year period.

What has changed though is the approach to this from mining companies. There is much more of an interest in ‘stepping into’ the electrification journey, versus just ‘flipping a switch’. In other words, we’re seeing more customers being interested in transitioning over time, which is one of the reasons why we have accelerated the development of our Dynamic Energy Transfer (DET) solution, which can already be leveraged with diesel-electric (AC) trucks. This allows customers to start to transition their site infrastructure now, without having to progress all the way to where they need to from an electrification perspective. It allows them to hit their interim greenhouse gas (GHG) reduction targets at the same time, ahead of those longer-term net zero ones.

I think that strategy is very appealing to many customers as they start to look at how to implement electrification effectively over time.

IM: Does this approach differ from region to region (as well as site to site) based on, for example, diesel price benchmarking, access to renewables, energy infrastructure, etc?

DJ: Absolutely. There are some places in the world where sourcing renewable energy is very easy – whether that is through hydropower, solar, wind, etc – and there are others where it is much more challenging. So, we still see that spread with our customers; everywhere from wanting to continue with traditional equipment, all the way to going fully electric.

I would say Australia is probably leading the movement towards electrifying and going all out to achieve zero GHG emissions. A lot of that is driven by carbon tax, government incentives and other aides.

IM Editor Dan Gleeson with Caterpillar’s Denise Johnson

IM: Of the solutions out there, do you see diesel-electric, progressing to battery-electric integrated with stationary charging and DET as the most viable commercialisation route?

DJ: I think mining companies are interested in exploring all the solution sets. From an economic perspective, there is still a lot to figure out in terms of how those will be commercialised.

While I don’t think the commitment towards electrifying has changed, the timeline around when they want to introduce electrification remains the biggest question mark. That is something we are working on, especially with our Early Learner customers. We want them to give us feedback on what timeline they would like to move forward with commercialising. We, in turn, want to make sure we’re meeting what our customers dates are.

IM: Within this electric haulage evolution, is there also a case to be made for exploring a ‘hybrid’ electric solution including battery pack, energy storage component and a smaller on-board engine?

DJ: We’ve studied that heavily and it depends on the mine site as to whether it would be an effective and economically viable option. We have done a lot of simulations around what would be required and, for some mines – especially deep pit mines – the amount of energy you need to pull the truck out of the pit would require the same size engine as you have on a diesel-electric truck today. A smaller engine, combined with an acceptably sized battery and an energy storage source, would not allow you to achieve that same haulage route.

There are other applications that could technically work, but the economics do not make sense now.

We really look at the DET with the diesel engine as our ‘hybrid’ solution. As you see today, we’re basically taking the engine down to idle when it is being propelled on the DET line. The ability to do that allows you to hit that hybrid ‘sweet spot’.

A Cat 798 AC on a DET line at Caterpillar’s Tucson Proving Grounds in Arizona

IM: And DET could also, in theory, allow you to use a smaller battery on board these trucks in certain applications…

DJ: Yes, which allows you more payload potential in those applications as well.

IM: I read that you have now built and tested seven Early Learner 793 XEs to date. What stages are these at in terms of getting to site for testing? Am I right in thinking the one at Newmont’s Cripple Creek & Victor has now been assembled?

DJ: Yes, that one [the Early Learner 793 XE at Cripple Creek & Victor] is going to start running soon. Another one has just arrived in Western Australia too; they are in the midst of transporting that to the test site.

IM: In terms of those Early Learner mine sites, how selective have you been able to be with the applications chosen to give you a wide breadth of knowledge as to how these battery-electric trucks may perform across different types of mine sites?

DJ: We, with our customers, have intentionally chosen the Early Learner site locations to hit ‘corner cases’ for battery truck validation: we have deep pit, we have high altitude, we have cold temperature, we have hot temperature, etc. We are really trying to ensure we hit all those corner cases so the validation that we are doing of not only the technology, but also the application, allows us to understand and learn. We have full confidence that iterations will be required, and we want to do that as soon as possible, so that is why we are sending these machines to the broad corner cases we are.

The customers are also looking for reassurance, as well. One of the things we are doing with the Caterpillar Early Learners is sending engineers to the site to help with that learning cycle. Our team will be right there at the mine site watching, first hand, the development and evolution of the technology as it iterates.

IM: Is that information – in terms of application performance – going to be shared across the Early Learner partner framework as well?

DJ: So, both our Early Learner customers and our Pathway to Sustainability customers are going to be learning with us and finding out what we are seeing at these sites. It is intended to be an industry learning opportunity. There are certain details that cannot be shared, but, when it comes to things like change management for people, and certain processes, technology and infrastructure, we will be sharing that information. It is important to spread this across the industry, and that is the intention of these specific programs.

IM: Might some of these Early Learners and Pathway to Sustainability customers also use DET within this process? Is that part of the conversation?

DJ: In some of these applications, yes, DET will be part of the solution. We will be carrying out field-follow trials on DET in 2025, intending to go into production with it in 2026, so that aligns well with our Early Learner trials.

IM: When it comes to batteries, has your thinking around the supply chain and creating the volumes needed to rapidly bring down the cost changed over this time period (2021 vs 2024)? Could you, for instance, look to acquire more off-the-shelf battery packs/modules, instead of creating customised battery solutions, to lower the cost of the overall battery truck?

DJ: No, our thinking hasn’t changed. We have a number of development agreements with various companies around battery technology that we’re continuing to build on. We think deep integration in this supply chain is important. We won’t be manufacturing cells; we will procure those from a variety of sources around the world, not just one source. The intention would be for us to take the battery cells, make the battery packs and racks, integrate that into our software, the cooling and all the controls. We think it will be a competitive advantage for us, and benefit our customers best, if we do it ourselves. That control system will allow deeper integration into the machine platform and the energy management component. We think it is a core part of what will make our product the optimal solution for our customers.

IM: Does that also come with an extra cost element?

DJ: It could. Caterpillar could buy battery packs off the shelf, but then, what would be the difference between Cat’s solution and anyone else’s? If we think Caterpillar’s control system – through cooling and battery management, for instance – will allow batteries to last longer, then that will allow our customers to achieve the lowest total cost of ownership (TCO). This is important as the battery represents a substantial cost, especially with the scale of the machines we are talking about. We need to be mindful of trying to make them last longer, while servicing and repairing them in an optimal manner.

The lifecycle of the battery is important to achieving this low TCO – from procurement of the cell through to secondary use, which we can leverage oftentimes in a stationary energy storage system application, through the recycle process. We may not do every piece of this – the recycling piece, for instance – but we want to be able to operate that complete lifecycle ecosystem in the way that makes the most sense and provides the best customer value.

IM: How advanced are you in terms of simulation, design and fleet management integration for the deployment of battery trucks? How important will this element be for customers achieving the results they want?

DJ: We have developed a completely in-house simulation software for this, which I am really excited about. The simulation tools will help us in ways we would never have imagined before, and it will be integrated into our autonomy solution as well. This will allow it to be used for advanced planning of the mine site itself, but also for decision support as to when to, for example, move the DET around the site, select how many trucks will be needed around the site, and how to optimise productivity within those confines.

We have already learned a lot from the Early Learner customer sites as a starting point for simulations, visualising their mine sites to help inform them of what they might need from a site infrastructure and energy management perspective. This is where we’re pulling in our energy & transportation expertise to help such analysis, as well as our digital team. It is an enterprise-wide focus that allows us to pull in a lot of skillsets from the entire team.

IM: Could such a solution be rolled out to customers as well?

DJ: We think it will be a very important tool for our customers. We think it will drive down the cost and ensure site optimisation is done at a much broader level than it is today.

IM: Lastly, you mentioned to Paul three years ago that you did see cabless trucks coming in the future. How far away from this future are we now?

DJ: It will depend on our customers pull for it; right now, we’re still putting cabs on trucks! Customers still want that versatility.

But there is a huge advantage to taking the cab out of the equation – in terms of weight and cost. It also allows much greater freedom in design iteration. Additionally, payload increases could be reaped.

We have some cabless designs out there already, but we are waiting for the customer pull. It is the customers that will ultimately help us decide when they are ready for those.

IM: I guess you could give the ultimatum of, ‘You can have a cab on the truck, but you’ll have to forego, say, 500 kW of additional battery capacity to have that cab.’ That may also focus their minds…

DJ: That sort of trade-off may be an option for our customers to consider. I also think as autonomy adoption continues to increase; it will help facilitate the likelihood of that taking place. There will have to be a way to remotely recover those units, but we already do that today.