Tag Archives: Comminution

Kwatani collaborating with EPCMs, miners on bespoke screening options

Mineral process plant designs are favouring higher-capacity vibrating screens and a more holistic approach to plant optimisation, according to screen specialist Kwatani.

“These trends hold great potential for the mining sector, and Kwatani has been at the forefront of technologies driving this direction,” Annelize van der Walt, Kwatani’s Business Development Manager for Mining and Minerals, says.

Vibrating screens are essentially the “glue” that integrates various unit processes, from bulk materials handling to optimally liberated comminution and pre-concentration, according to the company.

“Larger, engineered-for-tonnage screens are growing in popularity, as they reduce the number of processing modules and hence the level of infrastructure required, especially on mega-projects,” van der Walt says. “Higher capacity is becoming the new design standard for greenfields projects.”

There is also an ever-greater demand for reliability and uptime in these mission-critical machines, as well as an expectation of longer lifespans. All this requires bespoke solutions that address site-specific conditions, van der Walt says, while leveraging digital technology for real-time monitoring and control.

“Kwatani’s metallurgists and engineers use their extensive on-site experience and in-house laboratory facilities to innovate from our proven technologies,” she says. “A cornerstone of our philosophy is close collaboration with engineering, procurement and construction management contractors and end-customers to customise solutions, from concept to construction, commissioning and operation.”

Annelize van der Walt, Kwatani’s Business Development Manager for Mining and Minerals

Specific conditions include waterless beneficiation in arid Mauritania, where Kwatani’s screens operate completely dry in an iron ore plant. In South Africa and Botswana, meanwhile, the company has retrofitted dewatering screens to reduce water consumption, while increasing output by 40% with the same footprint.

“We also recently designed screens for exceptional ore characteristics in a precious metal beneficiation facility in Canada,” she said. “This required a high level of customisation, not only in the screening media but in the mechanical design.”

Remote mine locations – which are difficult to access for maintenance and replacement purposes – also guide the design parameters. In a recent project, Kwatani innovated by selecting special hard-wearing materials for the construction of the screening equipment. The design included components that would provide early warning of wear.

Embracing a more holistic plant design approach, customers often invite Kwatani to participate in optimising the screening side of their chosen beneficiation technology, van der Walt says. A different screening approach would be taken, for instance, in a dry pre-concentration application than in wet dense medium separation.

“This holistic approach is also facilitating greater synergy between original equipment manufacturers,” she says. “This is a very positive trend, allowing us to consider the impact of different equipment on the performance of each – from mineral processing apparatus to transfer chutes.”

Underpinning Kwatani’s responsiveness to customer’s specific needs is its ongoing research and development.

“Our R&D unit is currently working on projects to suit our designs to novel crushing and grinding technologies, which are changing the whole approach to the process flow of future plants,” van der Walt says. “These are significant innovations for the mining sector, and we are excited to be at the forefront with our evolving screen designs.”

Kwatani is incorporating digital technologies to facilitate remote monitoring and control of its vibrating screens. It is also piloting a service app for mobile phones, which helps operations predict their maintenance needs more accurately. The app also helps to drive down the total cost of ownership by gathering data that can be used in future design improvements.

Multotec solution scrubs up well at Ekapa Minerals diamond plant

A revolutionary new concept in fines scrubbing is proving to be a game changer for Ekapa Minerals at its Combined Treatment Plant (CTP) in Kimberley, South Africa.

The innovation, developed by Multotec Wear Linings, is processing both virgin underground kimberlite as well as tailings for retreatment at the CTP. The solution is effectively a pulping chute that scrubs and washes the re-crushed product after it has passed through the high pressure grinding rolls (HPGR) inter-particle tertiary crushing circuit.

The important advantage here, according to Multotec Wear Linings Projects Sales Manager, John Britton, is that it performs the scrubbing action faster and more efficiently than a traditional rotary scrubber would, and at much lower cost.

Multotec commissioned two of these pulping chutes at Ekapa Minerals in late 2019, where they have been operating consistently and in line with expectations. With the use of patented wave generators, the pulping chute uses the gravitational energy from the slurry flow to create a constant turbulent mixing action that releases the mud, clay and slime sticking to the kimberlite particles.

According to Ekapa Minerals CEO, Jahn Hohne, the pulping chutes are a welcome contribution to the company’s cost saving efforts, and a clear demonstration of Multotec’s expertise in developing value-adding solutions in the mining sector.

“The dual chute pulping plant is ideally suited to de-conglomerating the HPGR cake product and is exceeding expectations in efficiency and effectiveness at over 600 t/h, which is a major relief on the existing overloaded pair of CTP scrubbers,” he said. “The net result is a meaningful increase of up to 20% throughput capacity of the entire processing plant which substantially improves the economy of scale of CTP, feeding directly to the bottom line.”

Britton highlighted the efficiency of the system, which is able to aggressively scrub the material in just three to four seconds as it passes through the chute. This represents just a fraction of the usual retention time in a rotary scrubber, which is three to four minutes, according to the company. He also emphasises the drastic reduction in running cost which the pulping chute achieves.

“From our experience of plant layouts and flow diagrams, it is clear that fines scrubbers are significant contributors to a plant’s capital, operating and maintenance costs,” Britton said. “Scrubbers are equipped with large drives with gears and gearboxes to rotate the drum. They are high consumers of power and require mechanical component maintenance which means higher operating costs.”

Substantial structures and supports are also needed for the scrubber and its drive mechanisms. In designing the pulping chute, Multotec sought a simplified solution, Britton says. In addition to improving scrubbing efficiency, the objective included reducing the cost of replacing scrubber liners and the downtime that this demanded. The cost of replacing the steel shell of a scrubber – which is constantly subject to stress, wear and fatigue – was another cost to be considered.

“The pulping chute, by contrast, is a stationery and much simplified innovation, focused on the scrubbing of fines less than 32 mm in size,” the company said. “Slurry deflectors located at the top end of the scrubbing chute direct at least part of the slurry away from the scrubbing chute floor. This curls into an arched form which flows backwards into the approaching flow of slurry, creating the turbulent scrubbing effect.”

Britton said: “We custom-design the chutes to suit the application and can increase chute capacity to up to 800 t/h. This is achieved with no moving parts, bearings, hydraulic packs or girth gears; the only power required is to supply material and water to the receiving chute. These actions are also required to feed the scrubber, then gravity takes over and provides the required energy.”

Maintenance is also streamlined by designing the chute in segments. Should one segment be wearing more than others, it can be quickly removed and replaced – putting the chute back into operation while the original segment is refurbished as a spare.

Britton says the pulping chute has drawn interest from other diamond producers in southern Africa, Australia and Canada. It can also be applied in commodity sectors such as coal, platinum, chrome, iron ore and mineral sands.

Hudbay invests in comminution energy efficiency research with CEEC sponsorship

The Coalition for Energy Efficient Comminution (CEEC) has announced new sponsorship from base and precious metals mining company, Hudbay Minerals Inc.

Hudbay, a diversified mining company producing copper, zinc, gold and silver, owns three polymetallic mines, four ore concentrators and a zinc production facility in Canada and Peru (Constancia, pictured), as well as copper projects in the US. Its vision is to be a responsible, top-tier operator of long-life, low-cost mines in the Americas, CEEC says.

CEEC CEO, Alison Keogh, said that with growing global demand for minerals such as copper to support the shift towards low-carbon technologies, the need for lower footprint mineral processing was becoming even more critical.

“Rock crushing and grinding can typically account for more than half of a mine’s energy consumption,” she said. “By working together as an industry to understand and optimise comminution challenges, we have the opportunity to improve efficiency and environmental outcomes.

“We’re delighted that Hudbay has joined our list of visionary sponsors, each committed to collaborating with CEEC’s global network of miners, suppliers and researchers to advance efficient, cost-effective, lower footprint mining.”

Peter Amelunxen, Hudbay Vice President of Technical Services, said increasing performance and delivering sustainable value involves a combination of operational know-how and technical sophistication.

“We recognise that collaboration with CEEC is a positive step in our commitment to continuous improvement.”

Amelunxen said Hudbay was particularly interested in “adding a metric to our success” by contributing to the CEEC Energy Curves database. This free tool allows users to benchmark the energy efficiency of sites and visually assess potential energy and cost benefits through various operational scenarios.

“We’ve always approached what we do in terms of improving cost and energy efficiencies,” he said. “However, we’re most excited about using the Energy Curves to quantify, pound for pound, the energy reduction piece.

“This will help inform our decisions around targeted enhancements to existing sites and plan best practice operations in future mines. The bottom line is that this tool will enable us to demonstrate how we are improving environmental management while also improving returns for shareholders.”

David Clarry, Hudbay Vice President of Corporate Social Responsibility, said data sharing through the CEEC Energy Curves, and broader initiatives such as participation in the CDP (formerly Carbon Disclosure Project), were important for the industry.

“By being transparent and sharing knowledge, we can learn from each other and find novel approaches for achieving environmental benefits in a cost-effective way,” Clarry said. “Tapping into all the resources that CEEC offers gives us cutting-edge learnings so we can continue to pursue economically viable opportunities to improve energy efficiencies, reduce greenhouse gas emissions and better manage climate-related risks.”

Keogh said with the COVID-19 pandemic affecting many businesses around the world, Hudbay’s sponsorship during this time was commendable.

“As a lean, virtual not-for-profit, we thank all our sponsors for their continued support during this period of uncertainty,” she said. “This ongoing commitment will help CEEC and the industry to weather the storm and come out stronger and more sustainable on the other side.”

CEEC Medal recipients recognised for pushing lower footprint mineral processing

Two standout research and field work contributions that have the potential to improve environmental, social and governance (ESG) performance across industry have been awarded the highly respected CEEC Medal for 2020.

Attracting a record 23 high-quality nominations from across the globe, the shortlisted Operations and Technical Research papers showcased exciting site improvements and innovative ideas for future technologies, according to the Coalition for Energy Efficient Comminution (CEEC).

Now in its ninth year, the CEEC Medal recognises the best published papers that raise awareness of comminution research findings, alternative comminution strategies and installed outcomes.

CEEC Director and Medal Evaluation Committee Chair, Dr Zeljka Pokrajcic, said this year’s nominations reflected industry trends to install renewables, consider embodied energy and emissions, and the continued embracing of technologies such as pre-concentration and coarse flotation.

“It’s rewarding to see how industry leaders and experts are collaborating to forge improvements that make good business sense and proactively improve efficiency,” Dr Pokrajcic said.

The 2020 recipients are:

Operations

Peter Lind and Kevin Murray of Newmont and Alan Boylston and Isaias Arce of Metso Outotec, (formerly Metso), for their paper titled, ‘Reducing Energy and Water Consumption through Alternative Comminution Circuits’. This was presented at the 7th SAG Conference in Vancouver, Canada, in 2019.

Technical Research

Dr Grant Ballantyne (pictured), for his paper titled, ‘Quantifying the Additional Energy Consumed by Ancillary Equipment and Embodied in Grinding Media in Comminution Circuits’. This was also presented at the 7th SAG Conference in Vancouver.

Dr Pokrajcic said the winning Operations paper from Newmont/Metso Outotec documents a successful miner/vendor collaboration on how to assess the comminution circuit options in a low energy and water environment.

The paper considers a typical case of a low grade, bulk tonnage copper-gold orebody in an arid climate (Chile, South America) with significant energy costs. It brings together important solutions – including energy-efficient comminution, ancillary equipment, preconcentration and flotation – and presents compelling economic comparisons.

CEEC CEO, Alison Keogh, said of the paper: “This global knowledge sharing offers real value for decision-making across the globe. The paper’s practical, systematic technology approach, which incorporates all-important financial analysis, has the potential to accelerate industry’s progress to deliver lower footprint minerals.”

The paper’s co-authors, Lind and Boylston, explained that the work was the result of collaboration between many innovative thinkers, with ideas and approaches built over many years.

“We wanted to make a difference, to bring technologies together to show that you can save energy, save water and save money as well. This was a group effort, not only by our extended teams at Newmont and Metso Outotec, but also involving Steinert and Scantech in working through how to apply technologies,” they said.

The CEEC Medal Evaluation Committee praised the winning Technical Research paper from Dr Ballantyne as being “an impressive approach to capturing and quantifying energy consumption of ancillary equipment and energy used to manufacture and transport grinding media”.

The paper shares insights on embodied energy using data collected from sites and presents results on the CEEC Energy Curves.

“The research presents a broader approach that considers the impacts of not just energy used in particle breakage but also embodied energy in the manufacture and transport of grinding media, and energy used in the operation of ancillary equipment such as conveyors and pumps,” Dr Pokrajcic said.

“Bringing this spotlight to embodied energy has strategic value. Many companies are including investigation of supply chain in their procurement decisions.”

Dr Ballantyne, previously a Senior Research Fellow at the Julius Kruttschnitt Mineral Research Centre (JKMRC), and now with Ausenco, noted that his work started in 2012, building on earlier concepts shared by industry at a CEEC workshop in Australia. These concepts were developed further following industry input at the 2015 SAG Conference in Canada.

“I also acknowledge the inspiration and collaboration of Chris Greet (Magotteaux), Evert Lessing (formerly Weir, now Metso Outotec), Malcolm Powell (formerly The University of Queensland) and Greg Lane (Ausenco) for contributing expert input and data to the work,” Dr Ballantyne said.

“New research ideas and collaboration with industry are key to industry innovation,” he said. “Support and mentoring from these suppliers as well as experts from Ausenco and The University of Queensland ensured these new ideas could be published for industry to progress thinking.”

In addition to the two CEEC Medals awarded in 2020, three publications received High Commendations.

High Commendations – Operations

Ben Adair, Luke Keeney, and Michael Scott from CRC ORE, and David King from Minera San Cristóbal operations, for their paper titled ‘Gangue rejection in practice – the implementation of Grade Engineering® at the Minera San Cristóbal Site’. This was presented at Physical Separation 2019, in Cornwall, United Kingdom.

This paper shares the prediction and outcomes of a Grade Engineering pilot at Sumitomo’s Minera San Cristóbal operations in Bolivia. The work identifies ore amenability and levers to optimise up-front rejection of gangue before processing.

Keogh said: “This approach highlights the scale of the opportunity for mining leaders to invest in unlocking hidden value for shareholders through productivity step-change while significantly reducing impact on the environment.”

High Commendations – Operations (continued)

Malcolm Powell, Ceren Bozbay, Sarma Kanchibotla, Benjamin Bonfils, Anand Musunuri, Vladimir Jokovic, Marko Hilden, Jace Young and Emrah Yalcin, for their article titled ‘Advanced Mine-to-Mill Used to Unlock SABC Capacity at the Barrick Cortez Mine’. This was presented at the 7th SAG Conference in Vancouver.

This work was a collaboration between three organisations: JKMRC at The University of Queensland’s Sustainable Minerals Institute, Barrick’s Cortez mine and JK Tech. It shares an advanced mine-to-mill approach that unlocks improved SABC production capacity at Barrick’s Cortez mine in Nevada, USA.

Dr Pokrajcic said the article was an excellent review of the dynamic between SAG and ball mills, illustrating how mine-to-mill, with the consideration of blast movement as well as fragmentation, and operation-wide optimisation could empower sites to identify and sustain long-term improvements.

“It highlights the opportunity of operationalising cooperative ore blend control to balance energy use across the milling circuit, reducing specific energy consumption while benefitting from increased production,” she said.

High Commendation – Technical Research

Paul Shelley and Ignacio Molina (Molycop) and Dimitrios Patsikatheodorou (Westgold Resources), for their paper titled ‘SAG mill optimisation insights by measuring inside the mill’. This was presented at the Procemin-Geomet Conference in Santiago, Chile, in 2019.

In a first for industry, this innovative approach aims to collect data from sensors inside the grinding balls within grinding mills, CEEC said. It brings potential application for high frequency measurement of temperature and impacts inside the mill.

Dr Pokrajcic said: “If this early work can be successfully commercialised and scaled up, it could bring new insights that link to operational and energy efficiency improvements.”

Keogh said nominations for the 2021 CEEC Medal were now open, and she encouraged the submission of relevant, ground-breaking articles from online events and industry presentations.

“Because of disruptions to physical events, we have extended the closing date for submissions to October 30, 2021.”

Details of the application process for the 2021 CEEC Medal can be found here.

Thermo Fisher Scientific joins CEEC communication hub

The addition of new industry sponsors is enabling the Coalition for Energy Efficient Comminution (CEEC) to gain greater traction in leading change and driving the uptake of more energy and water efficient, lower impact mineral processing, it says.

CEEC said this after recruiting Thermo Fisher Scientific, a world leader in supplying solutions for efficient and sustainable mining, as a sponsor of the global not-for-profit communication hub.

Employing more than 75,000 people globally, Thermo Fisher Scientific operates through four segments: Life Sciences Solutions, Analytical Instruments, Specialty Diagnostics, and Laboratory Products and Services. The company provides weighing, monitoring and sampling systems and applications expertise to help optimise process control, production monitoring and automation in mining and bulk material handling.

Thermo Fisher Scientific Field Marketing Manager, Scott Ferguson, said the company’s mission “to make the world healthier, cleaner and safer” was very much in alignment with CEEC’s vision for more efficient, lower footprint mining.

Following extensive analysis of client needs, and a solid investment in research and development, Thermo Fisher is expanding its suite of sorting and pre-concentration products for the minerals sector, according to CEEC.

In response to renewed interest in pre-concentration processes, Thermo Fisher Scientific has launched its cross belt analyser, CB Omni Fusion, using prompt gamma neutron activation analysis into bulk ore sorting applications.

The company also released a new particle size analyser (PSM-500) in June 2020 – specifically designed for comminution circuits.

“The ability to measure product out of the grinding circuit in real time can have very large benefits,” Ferguson said. “By optimising grinding control systems, operators can maximise throughput, use energy more effectively and achieve greater recovery.

“This analyser draws upon proven technology and incorporates an interactive user interface and improved reliability,” he said.

Thermo Fisher Scientific has been supplying slurry samplers, in-stream analysers and cross belt analysers for more than 40 years, CEEC explained.

CEEC CEO, Alison Keogh, said Thermo Fisher Scientific was a welcome addition to its list of valued sponsors from around the globe.

“We’re proud to partner with companies that provide solutions for efficient and sustainable mining,” Keogh said. “These relationships open the door to wider awareness and adoption of new technologies and processes that positively impact the industry.

“This support from Thermo Fisher Scientific, in conjunction with our other sponsors, helps CEEC continue its important global work of providing free and impartial online resources and low cost events that highlight best practice and emerging advances in profitable, eco-efficient mineral processing.”

Los Andes Copper addressing Vizcachitas project energy and water needs in PFS

Los Andes Copper has ideas on adding to the number of large open-pit mines in Chile’s copper industry with the development of its Vizcachitas project, but it is eyeing up a different route to many of them that includes the use of energy-efficient HPGR technology and dry-stacked tailings.

In an update on its pending prefeasibility study (PFS), the company said it was re-evaluating the conceptual plan it laid out in its June 2019 preliminary economic assessment, which envisaged a base case 110,000 t/d operation using a SAG mill grinding circuit and thickened tailings dam.

The PFS is currently underway and areas of work being advanced include processing, the tailings facility, infrastructure, geology, the mine plan, environmental and social and community engagement, it said.

While delaying some of the metallurgical test work and field work, the current COVID-19 situation had not impacted the progress of the main engineering study, according to Los Andes. “All employees and subcontractors are working from home where possible and only a small group of individuals are working to prepare samples in the company’s Santiago core storage area,” it said.

The full PFS is not expected until the March quarter of 2021, but the company did outline some engineering leaps it has made since the PEA publication.

It said test work had shown that a HPGR circuit is feasible for the project and could provide “enhanced project economics with lower energy consumption and increased operating flexibility”.

The PEA outlined a SAG and ball mill crushing circuit with a target grind size of P80 (240 microns), but the more recent test work had shown room for an alternative with a three-stage crushing circuit using secondary crushers in open circuit and HPGR as a tertiary crusher in closed circuit. This circuit would target a grind size of P80 between 240-300 microns, the company said.

Such a change would avoid the use of a coarse ore stockpile, reduce energy consumption, reduce maintenance, and reduce the project footprint, it said.

HPGRs have previously been used at Chile mining operations, including the Compañía Minera del Pacífico-owned Mina Los Colorados iron ore mine and KGHM’s majority-owned Sierra Gorda operation.

Los Andes clarified: “HPGR technology has been identified as the most attractive grinding alternative given the data obtained from the preliminary test work conducted to date.”

The next big advance was made on the tailings side, with the company saying test work had shown that the project is amenable to filtering and dry-stacked tailings.

“This change would significantly reduce the project’s water consumption, footprint and environmental impact,” it said. It would also, one would expect, provide a much smoother environmental permitting route for Vizcachitas considering the negative sentiment surrounding thickened tailings dams in the industry.

There are knock-on benefits to this move too, with the reduced footprint required for dry-stacked tailings meaning all project infrastructure could fit into one operating complex in the Rocin Valley of Chile, around 150 km northeast of Santiago. The PEA previously outlined the use of infrastructure in both the Rocin Valley and the Chalaco Valley.

The preliminary filtration circuit Los Andes is working with shows the coarse fraction (87% of total tailings) could be filtered in belt filters, with the fine fraction (13%) filtered in pressure filters.

Recent studies on other dry-stack tailings project have tended to use either belt filters or pressure filters, but Los Andes said the combination of the two added flexibility to the tailings filtration operation at Vizcachitas and reduced operational risks due to variability of the finer fraction in tailings.

This would see the company require 12 belt filters and three filter presses for the 110,000 t/d copper-molybdenum operation.

According to the company, dry-stacked tailings would:

  • Reduce water consumption by around 50%;
  • Reduce the project’s footprint;
  • Be better suited for areas of high seismic activity;
  • Be transported by trucks or conveyors;
  • Eliminate the need for a traditional dam wall; and
  • Reduce the environmental risk by avoiding contact with ground water.

Metso engineering work steers Almonty towards production at Sandong tungsten project

Metso, in the face of COVID-19 restrictions, has kept Almonty Industries’ Sandong tungsten project in South Korea on track, completing and delivering the basic engineering work for the crushing and grinding circuit of the process plant.

Almonty said the work was delivered on May 15 and is now under review by the technical team, with approval expected within two weeks.

The overall process flowsheet with process mass balance, equipment list, plant layout drawings, process control philosophy, control diagrams and general technical information were provided after five months of extensive work by Metso, in collaboration with Almonty’s technical team, it said.

Ore characterisation tests on drop weight, bond mill work index, abrasion and crushability were conducted at the Metso laboratories during 2019 and 2020 in order to determine the physical properties, mineral liberation and comminution indices of the ore, which were used as the basis for the design criteria of the equipment for the Sangdong processing plant, it said.

“The Metso equipment selected for the basic engineering is from the world-class product range, which provides for high availability and low operational costs,” Almonty said.

Almonty’s Chairman, President and CEO, Lewis Black, said: “We appreciate Metso and its specialised professionals for their intensive work and dedication in the past months to produce this meaningful basic engineering output, turning its second-to-none experience and expertise in the mining field to the most optimum design criteria for the equipment and process of the Sangdong plant.

“Despite the hardship set by COVID-19, the timely delivery of Metso’s basic engineering work on these critical processing units and long-lead items, such as crushers and mills, will enable Almonty to meet the critical path timeline of the Sangdong project as proposed for the KfW-IBEX Bank project financing.

“The comprehensive and thorough basic engineering work produced by Metso will surely serve as the basis of attaining the performance criteria of the plant guaranteed by Metso.”

Almonty is currently running a pilot plant at Sandong (pictured) to test out the flowsheet on a much smaller scale, but the aim is to build the beneficiation plant this year before moving into tungsten concentrate powder production in 2022.

Weir Minerals targets customer ‘pain points’ with integrated solutions teams

Weir Minerals says its integrated solutions teams are combining experience from comminution to tailings, from chemistry to hydraulics, to deliver reliable solutions that solve its customers’ most frustrating pain points.

Since brothers James and George Weir founded what would become the Weir Group with their 1871 invention on the Weir boiler feed pump, engineering expertise, the company says, has been the driving force of its success.

“For almost 150 years, Weir has built its business on the principle that if something’s worth doing, it’s worth doing right and to do something right on a mine, you need the right team,” it said.

This is where the company’s integrated solutions teams come in, which combine technical expertise, local access and global knowledge to optimise mining companies’ entire process, according to the company.

John McNulty, Vice President of Global Engineering and Technology for Weir Minerals, says the industry needs integrated solutions now more than ever.

“With this approach, we continually listen to our customer’s pain points and identify ways in which we can improve their process,” he said. “Integrated solutions also aligns closely with the Weir Group’s sustainability strategy.

“We often talk to our customers about the challenges they face in terms of energy consumption, water usage and waste, and brainstorm ways in which we can help reduce their environmental impact. In this current climate, this approach is absolutely critical.”

When confronted with a problem that requires more than a single piece of equipment, Weir Minerals draws on its integrated solutions teams, made up of process engineers, design engineers, product experts, materials scientists, supply chain and logistics experts, as well as local sales teams who know the customer’s site.

These multi-disciplinary teams ensure a problem is considered from all perspectives, identifying potential issues and opportunities to optimise the circuit with upstream and downstream benefits, according to Weir Minerals.

With almost 10,000 employees operating in more than 50 countries, Weir Minerals can build teams with experience working in every kind of mine and quarry, in environments ranging from Canada’s frozen oil sands region and Indonesia’s rain-prone coal mines to remote deserts in Chile, Mongolia and Australia.

“As well as optimising equipment to provide maximum efficiency and wear life in any given situation, the integrated solutions team’s expertise allows them to tailor solutions that can be flown onto site when the roads freeze in the winter, prevent crocodiles climbing onto floating equipment, and utilise waste products like tailings as a resource,” the company says.

Seda Kahraman, a Regional Process Engineering Manager for Weir Minerals, says the company believes nothing is ‘impossible’, with engineers continually looking for better ways of doing things.

“Our team is made up of specialists each possessing different process systems’ expertise including, but not limited to: troubleshooting, designing tools and process simulation programs,” he said. “We combine this wealth of knowledge to deliver innovative solutions that address our customers’ varied needs.”

The key to Weir Minerals’ integrated solutions approach is the entire team of experts collaborating to identify all root causes of a customer’s challenge, considering all the contributing factors – which is where Weir Minerals’ interdisciplinary expertise is so important, it says.

The team perform process audits during site visits to identify bottlenecks and then, using flowsheets, mass balances, 3D layouts, and feasibility studies, advise on the most appropriate solution for the customer to not just resolve the problem they came to Weir Minerals with, but to optimise their process to save energy, reduce water waste or increase capacity, and ultimately save the customer money.

Metso and Outotec establish business areas and leaders ahead of merger completion

With Metso and Outotec having recently cleared one of the final remaining hurdles towards merging the two companies, the future Metso Outotec Board of Directors has laid out the planned company structure and related executive team appointments.

The nominations will become effective after the closing of the partial demerger of Metso and the combination of Metso’s Minerals business and Outotec, which is currently expected to take place on June 30, 2020, subject to receipt of all required regulatory and other approvals, including competition clearances – which the companies made significant headway on recently.

The companies said: “Combined, the future Metso Outotec will be a forerunner in sustainable technologies, end-to-end solutions and services for the minerals processing, aggregates, metals refining and recycling industries globally. The new organisation is designed to leverage the strengths and expertise of both companies.”

Metso Outotec will consist of the following six business areas:

  • Aggregates, providing crushing and screening equipment for the production of aggregates;
  • Minerals, providing equipment and full plant solutions for minerals processing, covering comminution, separation and pumps;
  • Metals, providing processing solutions and equipment for metals refining and chemical processing;
  • Recycling, providing equipment and services for metal and waste recycling;
  • Services, providing spare parts, refurbishments and professional services for mining, metals and aggregates customers; and
  • Consumables, providing a comprehensive offering of wear parts for mining, metals and aggregates processes.

The boards have also made some significant decisions on the key personnel that will lead these business units.

Markku Simula will become President of the Aggregates business unit. Simula currently serves as President, Aggregates Equipment at Metso.

Recently appointed Metso Mining Equipment President, Stephan Kirsch, will become President of the combined Minerals business area.

Jari Ålgars, currently CFO at Outotec, will become President of Metals.

Uffe Hansen, who is currently President of Recycling at Metso, will become President of Recycling at Metso Outotec.

Metso’s Sami Takaluoma will retain his President of the Consumables business area post at the new merged entity.

Markku Teräsvasara, who currently serves as the President and CEO at Outotec, will take on the President, Services and Deputy CEO role at Metso Outotec.

In addition to the business area president appointments, the following function heads and executive team members have been appointed:

  • Eeva Sipilä, CFO and Deputy CEO. Her appointment was announced on July 4, 2019. She currently serves as the CFO and Deputy CEO at Metso;
  • Nina Kiviranta, General Counsel. She currently serves as General Counsel at Outotec;
  • Piia Karhu, Senior Vice President, Business Development. She currently serves as Senior Vice President, Customer Experience at Finnair. She will join the company on July 1, 2020; and
  • Hannele Järvistö, Senior Vice President, Human Resources (interim). She currently serves as Senior Vice President, Human Resources (interim) at Metso. “This appointment is valid until a new position-holder has been selected and will start in this role,” the company said.

All the function heads and executive team members will report to Metso Outotec’s future President and CEO, Pekka Vauramo (pictured), the company said.

Reflecting on these changes, Vauramo said: “Above all, Metso Outotec will be strong in sustainability. Our extensive combined offering for minerals processing, from equipment to a broad range of services, will help our customers improve their profitability and lower their operating costs and risks, while at the same time reduce the consumption of energy and water.

“We at Metso Outotec understand our customer’s world and the daily challenges they face. Together, we will partner for positive change.”

CEEC welcomes University of Adelaide’s IMER as newest sponsor

A new sponsorship partnership between the Coalition for Energy Efficient Comminution (CEEC) and the University of Adelaide’s Institute for Mineral and Energy Resources (IMER) will, CEEC says, enhance greater opportunities for innovation in the resources sector.

IMER operates at the international forefront of the mineral, energy and resource sectors, with 200 of the world’s experts working with business and government on industry-led, challenge-based projects, according to CEEC.

Welcoming the sponsorship agreement, CEEC CEO, Alison Keogh, said both organisations valued the role of innovation in sustainable mining.

“IMER is a leading research and development institute that aims to meet global mining and energy challenges with multidisciplinary solutions, advancing our progress towards modern energy systems,” she said. “CEEC’s mission is to share mining practices that improve energy efficiency, reduce costs, enhance shareholder value and help businesses achieve sustainability targets.

“A collaboration with IMER offers the opportunity to share insights from research across disciplines with potential to revolutionise the mineral and energy resources sector.”

IMER Manager, Dr Chris Matthews, said CEEC had actively contributed to accelerating innovation in the mining sector with a collaborative project stemming from a CEEC workshop.

“After involvement in CEEC’s workshop, we forged new collaborations, including an exciting industry partnership which plans to trial the use of solar thermal energy to enhance comminution,” Dr Matthews said.

“Comminution reduces solid materials to a smaller average particle size, by crushing, grinding, cutting, vibrating, or other processes. Solar thermal heat can weaken rocks, reducing the need for fossil fuel-derived mechanical energy traditionally used to crush and grind rocks, making it a more environmentally sustainable alternative.

“IMER has developed a process where heat is provided by concentrated solar thermal, which data has shown could reduce comminution energy by up to 50%. The potential to improve energy efficiency in this project is just one example of the alignment between IMER’s research on low cost, low emissions energy and CEEC’s vision.”

Interim Director of IMER, Professor Michael Goodsite, said IMER aims to progress society towards modern energy systems required for decarbonisation and the transition to a net-zero emissions energy future.

“Innovation in the processing and comminution of the raw materials required for renewable electricity generation and transmission will help us achieve better outcomes for Australia and our world. I look forward to seeing continued value-adding outcomes from this important collaboration,” he said.

Keogh said IMER had already contributed important insights to industry, with experts sharing potential transformational opportunities using solar beam-down technologies for a range of industrial processes. She said potential ground-breaking technologies were the focus of the International Forum on Zero Carbon High Temperature Minerals Processing, which was held in Adelaide, South Australia, from March 16-18.

“IMER’s sponsorship support enhances CEEC’s work to share exciting new innovation relevant to mineral processing and comminution,” she said. “We are a not-for-profit group, entirely funded by sponsorship from the minerals industry. We have a strong network and a focus on sharing energy-efficient, lower-footprint comminution and processing practices. Sponsorship from IMER and others helps CEEC connect leading thinkers through our global network and workshops, to promote best practice and innovation.”