Tag Archives: Dynamic charging

Hitachi Energy and BluVein to combine technologies in electrification MoU

Hitachi Energy and BluVein, an innovator in dynamic charging technology, have signed a Memorandum of Understanding (MoU) to, they say, accelerate the electrification of heavy haul mining fleets and solve one of the biggest challenges in decarbonising mine operations.

Hitachi Energy’s advanced power electronics and digital charging technologies allow BluVein’s e-rail charging technology to deliver electricity safely and reliably to haul trucks of up to 400 t while transporting materials.

The collaboration will fast-track the development of a high-powered, fast and flexible dynamic charging solution for surface and underground mines and quarries in Australia and across the globe. BluVein will focus on its leading-edge e-rail and connection of the truck, which Hitachi Energy will further complement with advanced power electronics and digital solutions to power and monitor the whole system.

“This strategic collaboration with BluVein will enable our mining customers to trial next-generation dynamic charging solutions vital for achieving net-zero emission targets without compromising on operating practices or productivity,” Marco Berardi, Head of Grid & Power Quality Solutions and Service business at Hitachi Energy, said. “We believe this new collaborative approach will deliver on our common goal to accelerate the transition to all-electric mining and a carbon-neutral future.”

James Oliver, CEO at BluVein, added: “This MoU supports BluVein’s mission of partnering with a technology leader to deliver a universal dynamic connector that facilitates the removal of fossil fuel from mines and help propel the industry globally to meet its decarbonisation goals. Together, we are helping the industry move to a more sustainable and responsible future.”

Hitachi Energy and BluVein are also exploring the off-vehicle hardware requirements for BluVein1 for underground and smaller fleets, while actively cooperating on BluVein Proving Grounds, currently under construction in Queensland, Australia.

BluVeinXL: aiming for benchmark status in the haulage fleet electrification game

Since being named one of eight winning ideas selected to progress to the next stage of the Charge On™ Innovation Challenge in 2022, BluVeinXL has done more than most, assembling a consortium of major mining partners focused on accelerating BluVein’s standardised dynamic charging technology to decarbonise the mining sector.

Late last year, Austmine, which manages the BluVeinXL project, welcomed Rio Tinto, OZ Minerals, BHP, Newcrest Mining, Evolution Mining and Freeport-McMoRan to the consortium of funding members to fast-track the BluVein technology. It has since welcomed Vale to the consortium.

These companies have backed the vision of BluVein, a joint venture between Olitek (Australia) and Evias (Sweden), to dynamically power mixed-OEM haul fleets while in motion, enabling smaller on-board battery packs, faster vehicle haulage speeds up ramp, grid load balancing, elimination of static fast charging, maximum fleet availability and – most importantly – the complete elimination of diesel.

These consortium partners are focused on delivering BluVein’s fleet electrification solution to Technology Readiness Level (TRL) 6 with a minimal viable product (MVP) demonstration, ahead of full commercial deployment of the technology.

BluVeinXL leverages much of what was developed for BluVein1, the primarily underground solution using the BluVein Rail™ slotted power rail system and the on-vehicle BluVein Hammer™ to simultaneously charge and power mining fleets ‘on the go’. The Rail is an enclosed electrified e-rail system mounted above or beside mining vehicles while the Hammer connects the electric vehicle to the Rail.

In underground scenarios, BluVein’s technology completely removes the need for battery swapping or static fast charging while allowing the use of smaller, lighter and lower cost batteries in continuous and high-duty applications, according to the company.

In open-pit operations, BluVeinXL will be similarly transformative, offering a next-generation alternative to what BluVein refers to as “the cumbersome, inflexible and expensive conventional catenary wire trolley systems that are currently hampering mines from fully decarbonising their haulage operations”.

To get the latest on the BluVeinXL open-pit electrification solution, IM caught up with James Oliver, CEO of BluVein.

IM: Now you have the founding consortium members confirmed for BluVeinXL, where do you go from here? Are you currently engaged with major OEMs on creating a standard design that can fit on any truck?

JO: Seven consortium members is just the start, and we will be announcing additional members very soon. We greatly value our members as it is ensuring we get ‘voice of industry’ and the key technical requirements during this critical stage. One of the major benefits our members see in BluVein is our standardisation, meaning our technology can be used with mixed-OEM fleets, mixed machine types and can even be used to make alternative clean fuel use more efficient and cost effective.

We are currently working with two to three major fleet OEMs and progressing agreements related to integration and demonstration of the BluVeinXL technology. We are confident we will be able to demonstrate with at least one OEM as the MVP, and hopefully more during the current project. Once we agree with each OEM the agreed interface point, then the BluVeinXL integration with the various fleet types becomes quite simple. To do this our technical team works closely with the OEMs on all aspects of the integration including Hammer, Rail and the control systems. By standardising with our various OEM fleet partners, we are delivering on what the mining customers are demanding – a truly standardised dynamic charging system.

James Oliver, CEO of BluVein

IM: How are you managing to engage OEMs that are also providing their own trolley assist applications that, they believe, may be suitable for similar haul truck propulsion setups to BluVeinXL?

JO: BluVein’s safe and proven electrification technology is based on over a decade of research and development undertaken for electric highways by our joint venture partner Evias. We are confident in our system’s ability to deliver high power transfer whilst also delivering on the safety and robustness requirements demanded by mining customers. Critically, the high-power transfer characteristics of BluVein’s slotted rail system enables simultaneous on-ramp hauling and charging of multiple closely spaced mining haul vehicles. This is a game-changing capability and of high interest to our mining partners. The conventional catenary wire-based trolley systems have limitations on power delivery capacity, earthing and other critical safety elements, and, therefore, are not as favoured by miners.

We do, however, see benefits of OEMs trialling a range of different mine electrification approaches, as long as we can all agree on a common vehicle connection point, specifically at the dynamic charge interface. This will ensure the end customer is able to select the best solution for their individual sites. We understand that BluVein will not be everything to everyone, but for the applications it does suit, we are confident it will be a true game changer over conventional catenary and static fast charging options for haul truck fleets.

We hope to be able to demonstrate BluVeinXL side by side with a catenary wire system to showcase the competitive advantages BluVeinXL has – that is higher power transfer; safer, easier to install, use and relocate; and overall lower cost. Ultimately it will be up to the customer to choose based on the performance of the system and we think this will stack up in BluVeinXL’s favour.

IM: Can you expand on how your system alleviates the requirements on haul road conditions that typically comes with the current generation of trolley assist technology? Do you see your Rail and Hammer technology being able to work in any conditions (the Arctic included)?

JO: Part of our current package of work is to understand with our mining partners what these extremes are to ensure we are developing a solution that has minimal up-stream and down-stream impact on operations. The vision is to have a deployable solution that suits all climates and terrains.

Our core technology partner, Evias, has spent over a decade developing BluVein’s core technology to function effectively in icy and muddy conditions. By building on these learnings, we are confident that BluVeinXL will work in the vast majority of terrains and climates experienced in mining – from the hot and humid Pilbara region of Australia to the coldest parts of northern Canada.

It is BluVein’s safe slotted e-rail technology that enables it to be located near to the ground to the side of haul roads. Our Hammer and Arm is being designed to cater for the full range of haul road conditions, thereby reducing the burden on mines to maintain haul road conditions to perfection as is required with conventional overhead wire catenary systems.

Our consortium members have very good geographic spread to help us understand and test in these conditions. Part of our current work is to clearly understand from our mining partners what these environmental extremes are to ensure our solution will function effectively in all operations.

IM: Has your work to this point indicated how small the on-board batteries could be in a typical open-pit scenario for 220-t-payload trucks?

JO: We have taken a technology-agnostic approach to what on-board power and storage system we are supplying; our current focus is getting enough energy onto the vehicle as efficiently and safely as possible to power drive motors and charge smaller batteries if and when available. While we cannot reveal exactly how much smaller we can make the batteries, early studies show the batteries can be reduced as much as 60% when coupled with dynamic charge that has enough capacity to power the drive and charge the battery.

BluVein1 for underground and quarries can provide up to 3 MW of power sufficient for up to 100-t payload vehicles

IM: So what payloads do you think you could be providing this solution for?

JO: The BluVein Rail and Hammer design is completely scalable. BluVein1 for underground and quarries can provide up to 3 MW of power sufficient for up to 100-t payload vehicles. The BluVeinXL system can offer in the range of 4-7 MW, sufficient for up to 250-t payload vehicles. Our engineering team plan to use BluVein1 and BluVeinXL as stepping stones for an eventual introduction of a BluVein solution suited to ultraclass fleets with 9-12 MW of capacity sufficient for up to 350-400 t payloads.

IM: Where are you with your field trials on this solution? Do you expect these to commence this year?

JO: The targeted ‘wheels on track’ for BluVein1 is 2023, followed closely in 2024 with the BluVeinXL MVP demonstration. Right now I cannot reveal too much but there are some exciting partnerships being progressed to achieve this.

In terms of field trials, our ideal setup – and I think one the industry really wants – is a single site where all key mine electrification technologies can be tested out side-by-side. There are some very positive conversations going on between all three parties – the solution OEMs, truck OEMs and mining companies – on this front, which is exciting for BluVeinXL.

As has been said many times, there is no ‘silver bullet’ when it comes to mine decarbonisation. We know that BluVein’s dynamic charging solutions will tick a lot of boxes, but not all. So, it’s great if we can work together to ensure we cover any gaps. There is just too much at stake to try and go it alone.

IM: Anything else to add on the subject of electrification and dynamic charging?

JO: One question we have been asked is does BluVein’s Hammer and Rail technology only support dynamic charging? While power transfer while in motion is our obvious advantage, our system is basically an automated IP2X-rated power connection that can transfer more than 4 MW of energy. Could we use this for automated static fast charging also? Our answer to that is absolutely.

The Komatsu AZPG: bringing unique mining concepts to life

Seeing Komatsu’s Arizona Proving Grounds (AZPG) in person, it is easy to understand why the OEM is in a leading position when it comes to both surface mining automation and electrification.

The 660-acre (270-ha) facility is a living and breathing example of mining’s past, present and future; touring round, one can see 20-plus-year-old machines, the latest -5 ultra-class haul trucks and concept vehicles that will form the basis for future commercial autonomous and/or electric solutions.

These concept vehicles – at least when IM visited in November – included the company’s EVX battery proof of concept vehicle and the cabless IAHV autonomous mining truck concept.

The EVX is based off the basic 860E platform (a 254-t payload machine) and was shown off at MINExpo 2021. Prior to that, it had been testing out its all-battery power functionality at AZPG.

The IAHV, which debuted at MINExpo 2016, was developed by Komatsu as an unstaffed vehicle designed to maximise the advantages of such operation. It remains on show, with the company incorporating several learnings from this vehicle into its standard Electric Drive Trucks (EDT) and autonomous products.

Pat Singleton, Product Director, EDT, refers to AZPG as the “ultimate laboratory to be able to bring unique mining concepts to life”.

He added: “The testing we do at AZPG gives us the opportunity to reduce product development risk and take the validation process one step further before the products make it to the mine.”

The original focus at AZPG was the EDT product line, yet, as Komatsu has expanded its product offerings, more solutions continue to be tested or validated at the facility each year.

This testing is extensive, as was made obvious to IM while navigating an autonomous vehicle ‘assault course’ and hearing about new wet- and dry-disc brake trial combinations, higher speed tramming on autonomous haul trucks and more.

It is not just trucks subject to these try outs either, with hydraulic shovels, surface drill rigs, water trucks, dozers and other vehicles having a presence on site.

“If anything, the importance of AZPG has increased as technology has continued to evolve,” Singleton said. “AZPG allows for a single location to harmonise development efforts of all the Komatsu entities, providing research and development into our products.”

What’s more, the facility is located in Arizona’s renowned copper heartland.

This has been very useful for Komatsu, with Asarco’s Mission mine next door to the facility representing a real life mine site testing opportunity for solutions that have graduated from AZPG.

AZPG has 23 full-time staff, but its desk count is much higher, indicating the number of visitors and partners AZPG welcomes on a weekly basis from across the globe.

Some of these visitors include FrontRunner® autonomous haulage system (AHS) customers, who have, more recently, been invited to send operators to the facility for invaluable training ahead of planned autonomous deployments.

Anthony Cook, Vice President, Autonomous Systems, Mining Technology Solutions, told IM that this approach is enabling mining operations to leverage more of the benefits of AHS from day one of deployment, reducing the need to conduct a ‘soft start’ with the technology as operators come to terms with the transition from staffed to autonomous operations.

A representative from Komatsu’s dealer network was receiving training on the AHS system during IM’s visit, with Cook confirming another major mining customer and Komatsu distributors had sent operators to Arizona earlier in 2022 ahead of a planned deployment in 2023.

AHS developments are a key focus area for AZPG, with the on-site trucks testing out many different scenarios that customers could experience at their operations.

Software updates make up many of the ongoing FrontRunner AHS developments, but the company also continues to explore the use of more sensors and cameras on board its vehicles for obstacle detection and positioning. This is all geared towards improving visualisation, communication and safety, reducing potential false positives during operation and ultimately helping to improve productivity.

As for software upgrades to FrontRunner AHS, all developments are initially tested in a bench environment where the company can simulate the system. This may be within the former Modular Mining facility, also in Tucson, or at another one of Komatsu’s many testing hubs.

“Once it has passed virtual testing then final functional and stability testing is validated at AZPG before release to the customer,” Singleton said.

Some recent testing related to mixed fleet operations of staffed and autonomous trucks that originated in the lab to later emerge at AZPG has since led to a FrontRunner first at Anglo American’s Los Bronces mine in Chile.

The mining company only recently started its AHS deployment at the copper mine, initially going live with ten 930E-5 trucks, but Cook confirmed to IM that these vehicles are now interacting with staffed trucks in the mining environment.

“We’ve got off to a very strong start at Los Bronces, with Anglo American really embracing the technology and pushing it to its limits,” he said.

The full Los Bronces deployment could see 62 electric drive Komatsu 930E trucks running by 2024.

Those who visited MINExpo 2021 in Las Vegas will also remember the PC7000-11 shovel that was being teleremote operated live from the show, while the unit was over 600 km away at AZPG. This unit (above) is still positioned on site and the teleremote operation is continuing to be refined from inside the facility, with AutoSwing and AutoDump functions a few recent notable additions for improved operability.

Komatsu expects to replace this shovel with a backhoe version later this year, to also be teleremotely operated.

Trolley transformation

The first vehicle IM saw when driving up to AZPG was the EVX; its shiny yellow exterior providing the perfect contrast to the rich blue backdrop of the Tucson sky.

Since leaving Las Vegas in September 2021 and heading for Tucson, the company has made preparations to remove the small on-board battery which was displayed on the Komatsu stand and begin replacing it with a larger one from one of its integration partners.

The connectors for trolley were still on board and the team was awaiting final commissioning of the on-site trolley line ahead of further testing.

IM Editor Dan Gleeson (left) on site at AZPG with some of the Komatsu team

Singleton explained: “The EVX was a proof of concept to demonstrate that a large electric drive haul truck could be powered by a battery. Now that we better understand the ability of this technology to work in our EDT products, we must continue to advance the technology to drive increased performance and reduced operating costs.”

To date, Komatsu has continued with truck testing to learn how the various subsystems work with batteries while finalising its battery chemistry.

“We’ve also installed trolley infrastructure, which will allow us to conduct further testing on batteries and other alternative power sources,” Singleton said.

This infrastructure – made up of 39 poles that are ‘movable’ and ‘self-supporting’ – could support two 980E-5s running on the line at the same time.

Initially, it will support both the EVX and one 930E running in tandem.

The line itself is powered by a 9 MW substation, which Siemens and a local electrical and engineering company established.

The trolley course has been designed with a 60° corner to demonstrate to operators that this technology is for more than just straight hauls.

“This highlights the flexibility of the system and shows mining operators where the technology can already go today,” Cook said. “The concrete pillars, which can be moved with wheel loaders and other support equipment, are an indication that the trolley can ‘move with the mining’, too.”

Singleton said the next development for the EVX will focus on an increase in the battery capability and the investigation of proof of concept on a variety of static and dynamic charging options.

The trolley line will, no doubt, play a role in this testing, although it is not yet known if a single or hybrid power setup will be selected initially.

What is more certain, however, is the status of fuel cell electric vehicle (FCEV) testing on the EVX. Singleton said research into this area continues, yet a practical test where fuel cells and a battery were mounted on the chassis was some way off.

At this early stage, Singleton says the first commercial power-agnostic offering the company establishes will likely be diesel and/or diesel trolley.

He explained: “This approach delivers reduced risk to the overall portfolio by blending the power-agnostic chassis with a refined version of an existing technology (diesel engine + overhead dynamic trolley).”

“It also serves the secondary purpose of allowing battery technology the opportunity to mature from a performance perspective as we work to define overall truck fleet performance. Additionally, static and dynamic charging options (including development of an industry-standard connector) are within the scope of this product.”

And the first commercial power-agnostic truck will be in the 291 t (320 ton) class – the same size as a 930E – Singleton confirmed, adding that scalability was something being considered at every stage of the truck’s development.

“Scalability is the overall goal and is in alignment with the general power-agnostic approach to our design,” he said. “The major challenge will be the scalability of the energy storage componentry from a cost and performance standpoint. This is the primary driver behind the continued deliberate development cadence designed to give the battery technology time to mature over the intervening period before the design is finalised.”

When asked about fixed fast charging – a concept that has risen up the mine truck charging rankings of late with Charge On Innovation Challenge work from Hitachi Energy and a consortium led by Shell, respectively – Singleton referred to developments as a “two-way street” and a “work in progress”.

“Essentially those solutions need better definition and ‘mining proofing’ before we introduce them into AZPG,” he said. “Perhaps an opportunity exists to co-develop these technologies and improve speed to market but, again, this is still being defined.”

The trolley infrastructure at AZPG – made up of 39 poles that are ‘movable’ and ‘self-supporting’ – could support two 980E-5s running on the line at the same time, according to Komatsu

All this work sounds encouraging for those companies interested in adding to their ultra-size class truck fleets in the 2030s in line with industry-wide decarbonisation plans, but Komatsu customers looking to buy trucks today will be after future-proofed solutions.

Komatsu is all too aware of this and planning to provide a battery retrofit solution for its current -5 products, Singleton said.

GHG Alliance and beyond

As has been well documented, Komatsu has aligned with a core group of customers under its GHG Alliance to accelerate developments on the electric haulage front.

Rio Tinto, BHP, Codelco, Boliden, Teck, Antofagasta Minerals SA and Freeport-McMoRan are key stakeholders within the alliance and will be keen to see what testing emerges on that trolley line into 2023.

While Singleton said the communication process with these customers was still being refined, he acknowledged AZPG’s role in future developments.

“There is no question AZPG will provide a critical backdrop to accelerating our efforts and streamlining our ability to communicate and advance the development progress with our customers,” he said.

Whether the company chooses to initiate an early-learner program like the other big yellow equipment maker it competes with is yet to be seen, with Singleton saying its plans will leverage the “Komatsu approach” regardless of what the competition is doing.

What is clear is that AZPG will continue to keep Komatsu on the leading edge of mobile mining equipment technology developments.

As evidence, Cook reeled off several ongoing projects the company was engaged in, including an autonomous water truck in Australia, automated dozers in Brazil and plans to semi-automate electric blasthole drills.

Going forward, another consideration will be the ability to integrate AHS with trolley operations.

“Komatsu, as an organisation, is committed to solving our customer’s and the industry’s challenges, and we will continue to leverage AZPG and the wider Komatsu network to do this,” Cook said.

BluVein’s underground dynamic charging developments accelerating

BluVein, after officially receiving agreement and project approval from all project partners, has initiated the third phase of technology development and testing of its underground mine electrification solution, BluVein1, it says.

BluVein is a joint venture between Australia-based mining innovator Olitek and Sweden-based electric highways developer Evias. The company has devised a patented slotted (electric) rail system, which uses an enclosed electrified e-rail system mounted above or beside the mining vehicle together with the BluVein hammer that connects the electric vehicle to the rail.

The system, which is OEM agnostic, provides power for driving the vehicle, typically a mine truck, and charging the truck’s batteries while the truck is hauling load up the ramp and out of an underground mine.

The underground-focused development under BluVein is coined BluVein1, with the open-pit development looking to offer dynamic charging for ultra-class haul trucks called BluVein XL. This latter project was recently named among eight winning ideas selected to progress to the next stage of the Charge On Innovation Challenge.

The purpose of the third phase of the BluVein1 technology development is to:

  • Conduct a full-scale refined hammer (collector) and arm design and testing with a second prototype;
  • Execute early integration works with mining partners and OEMs;
  • Provide full-power dynamic energy transfer for a vehicle demonstration on a local test site; and
  • Confirm a local test site for development.

IM understands that the company is close to sealing an agreement for a local test site where it will carry out trials of the dynamic charging technology.

James Oliver, CEO, BluVein, said the third phase represents an essential final pre-pilot stage of BluVein1.

“It excites me that the BluVein solution is becoming an industry reality,” he said. “The faster BluVein1 is ready for deployment, the better for our partners and the mining industry globally.”

BluVein recently entered a Memorandum of Understanding with Epiroc, where the Sweden-based OEM will provide the first ever diesel-to-battery-converted Minetruck MT42 underground truck for pilot testing on the slotted electric rail system from BluVein.

“This MoU also ensures that we are designing and developing the system into a real-world BEV for full-scale live testing and demonstration on a pilot site in 2023,” BluVein says.

In addition to Epiroc, IM understands BluVein is working with Sandvik, MacLean, Volvo and Scania, among others, on preparing demonstration vehicles for the BluVein1 pilot site.

The BluVein1 consortium welcomed South32 into the project in May, joining Northern Star Resources, Newcrest Mining, Vale, Glencore, Agnico Eagle, AngloGold Ashanti and BHP, all of which have signed a consortium project agreement that aims to enable final system development and the construction of a technology demonstration pilot site in Australia.

The project is being conducted through the consortium model by Rethink Mining, powered by the Canada Mining Innovation Council (CMIC), which CMIC says is a unique collaboration structure that fast-tracks mining innovation technologies such as BluVein and CAHM (Conjugate Anvil Hammer Mill).

Carl Weatherell, Executive Director and CEO, CMIC/President Rethink Mining Ventures, said: “With the urgent need to decarbonise, CMIC’s approach to co-develop and co-deploy new platform technologies is the way to accelerate to net zero greenhouse gases. The BluVein consortium is a perfect example of how to accelerate co-development of new technology platforms.”

Oliver concluded: “The BluVein1 consortium is a great reminder that many hands make light work, and through this open collaboration with OEMs and mining companies, we’re moving faster together towards a cleaner, greener future for mining.”

BluVein XL open-pit mining dynamic charging solution gains momentum

Much of the buzz around BluVein to this point has focused on its dynamic charging infrastructure for underground mining and quarries, but the company has also been gaining momentum around a surface mining project – as the most recent Charge On™ Innovation Challenge announcement indicates.

The company and its BluVein XL solution were today named among eight winning ideas selected to progress to the next stage of the competition, which is seeking to solve one of the biggest challenges in decarbonising mining operations: the electrification of haul trucks.

Within this context, BluVeinXL, the company’s new product line, will be capable of dynamically feeding power to heavy-duty mining fleets with up to 250-t payloads.

The technology leverages much of what was developed for BluVein1: a patented slotted (electric) rail system using an enclosed electrified e-rail system mounted above or beside the mining vehicle together with the BluVein hammer that connects the electric vehicle to the rail. This system provides power for driving the vehicle, typically a mine truck, and charging the truck’s batteries while the truck is hauling load up the ramp and out of an underground mine.

To this point, funding support for the BluVein1 project – being developed for vehicles up to 60-t payload and powered by Rethink Mining (Powered by CMIC) – is being provided by Vale, Glencore, Oz Minerals, Northern Star, South32, BHP, Agnico Eagle, AngloGold Ashanti and Newcrest Mining.

BluVeinXL, meanwhile, has seen the company engage with more than 10 “global mining company leaders” in progressing to a pilot demonstration of the technology. While the company plans to announce the names of these supporting mining companies shortly, it says they all see the need for an industry-standardised, OEM-agnostic, safe dynamic power feed infrastructure to suit mixed OEM open-pit fleets.

The key benefits of the dynamic power feeding solution BluVein is pushing are smaller on-board battery packs, faster vehicle haulage speeds up ramp, grid load balancing and maximum fleet availability.

“Our mining company supporters have provided feedback to us on the benefits they see with BluVeinXL over traditional overhead exposed wire catenary systems offered by other OEMs,” the company said. These are:

  • Near to the ground installation enabled by our patented Ingress Protected safe slotted rail technology;
  • Safer and faster installation;
  • Easy relocation as required to suit open-pit ramp movements over time;
  • Requires no heavy civil foundation requirements;
  • Alleviates the requirements on haul road conditions;
  • Offers purchasing flexibility on electric vehicles through the adoption of an industry-standard dynamic power feed infrastructure; and
  • Safer mine sites with no high voltage exposed overhead wires.

The company concluded: “Together with our mining company supporters, BluVein looks forward to working with all OEMs as we progress towards our planned pilot demonstration at a yet to be announced location.”

BluVein charges into mine electrification space

BluVein, armed with its “dynamic charging” philosophy, is pitching a different option to miners looking to electrify their underground operations over the long term.

While battery-electric machines such as light utility vehicles, mobile mining support equipment, and low-to-medium tonnage LHDs and trucks have spread throughout major mining hubs like North America, Europe and Australia, the next step is electrifying the machines with the heaviest duties in the underground mining space.

If the sector settles for battery-electric options in this weight class for uphill haulage scenarios, they will need to leverage bigger batteries, more battery swapping or some additional charging infrastructure to power vehicles up ramp.

Two of the leading mining OEMs in the electrification space are considering all the above.

Sandvik, through its wholly owned Artisan Vehicles subsidiary, is developing a 65 t payload battery-electric haul truck with a bigger battery than its 50-t vehicle (the Z50) that will see quick battery swapping employed on uphill hauls, while Epiroc is weighing the potential of fully-electric operation with a battery and trolley combination in its larger payload class trucks.

BluVein is intent on laying the groundwork for multiple OEMs and mining companies to play in this space without the need to employ battery swapping or acquire larger, heavier batteries customised to cope with the current requirements placed on the heaviest diesel-powered machinery operating in the underground mining sector.

It is doing this through adapting charging technology originally developed by Sweden-based EVIAS for electrified public highways. The application of this technology in mining could see operations employ smaller, lighter battery-electric vehicles that are connected to the mine site grid via its Rail™ and Hammer™ technology and a sophisticated power distribution unit to effectively power electric motors and charge a vehicle’s on-board batteries.

This flexible technology is set for a trial later this year, with the company – a joint venture between EVIAS and Australia-based Olitek – already busy behind the scenes enlisting a number of funding partners to push forward with a collaborative pilot aimed at demonstrating the next generation of trolley assist technology.

With this aim in mind and knowledge of previous trolley projects at underground mines, IM put some questions to BluVein Founder, James Oliver.

IM: What input does Olitek provide within BluVein? Do they produce customised prototype battery-electric machines?

JO: BluVein is a new company formed through a partnership between EVIAS and Olitek. While we are a new venture, unlike traditional start-ups, BluVein is backed by two highly experienced long-standing companies and is seeking to enable the fully-electric mine of today.

The biggest need for electric mining vehicles is in heavy-duty load and haul applications on inclined roads. In this instance, batteries on their own are not up to the task – not even close. Dynamic charging is the game-changing technology that will enable fully-electric heavy-duty load and haul on inclined roads.

In the partnership, Olitek provides the mobile vehicle, robotics, electrical and mining environment expertise to enable BluVein to operate safely and reliably in a mining environment. BluVein is currently working with a number of mining vehicle OEMs to integrate the BluVein system to suit their on-board battery and motor architecture, enabling safe dynamic charging from a standardised slotted rail system.

The joint venture does not produce customised prototype battery-electric vehicles or battery machines, and we are vehicle OEM-agnostic; we are open to working with any battery-electric vehicle manufacturer enabling standardised dynamic charging.

IM: What companies are involved in the collaboration mentioned? What is the aim of this collaboration (timelines, goals, etc)?

JO: Currently we are not able to disclose which mining companies and vehicle OEMs we are working with – it will be revealed in the not-too-distant future. They are, however, a selection of very well-known major companies from Sweden, Canada and Australia. We are open to other like-minded, early adopters to join the BluVein collaboration.

Our aim is to commence building our industry-backed technology demonstration pilot site in Brisbane, Australia, by late 2021 in a simulated underground environment. This will involve a section of BluVein rail and at least one electric vehicle fitted with the BluVein hammer system to demonstrate dynamic charging whilst hauling loaded up an incline.

IM: What are your overhead systems (BluVein Rail) providing that your typical underground trolley systems are not providing? How does the infrastructure required compare with, say, what Vale has in place at Creighton and Coleman in Sudbury for its Kiruna trucks?

JO: Existing trolley assist systems that utilise exposed high voltage conductors cannot be used in many mining jurisdictions globally due to safety concerns and an inability to comply with mining regulations. This is particularly the case in underground mines where clearance above mobile fleets is limited. The BluVein rail system is unique as all high voltage conductors are safely housed within ingress protection (IP) rated slots. This effectively mitigates against risks of accidental contact by mining personnel or the vehicles.

The safe and standardised systems allow for the charging of a vehicle’s batteries whilst simultaneously powering the electric-drive motors. This gives a battery-electric vehicle almost unlimited range and eliminates the requirement for battery swapping, downtime and charge bay infrastructure requirements.

Volvo FMX Electric with BluVein

And BluVein Rail does not need to be installed in all parts of the mine – only in the heavy-duty cycle zones such as mine declines and pit ramps. When tramming/hauling on flat gradients, mining vehicles operate on their own internal batteries. This dramatically reduces the system installation complexity and installation cost. Where the BluVein Rail terminates, the vehicle automatically disconnects and reverts to its on-board batteries for power, without stopping.

Ease of maintenance is one of our focus points for BluVein. The BluVein system is developed to handle typical mining drive terrain conditions so no special maintenance is required to cater for conductor contact relative to the vehicle. Our BluVein Hammer, an all-terrain trolley, takes care of this. This provides the connection between the mobile machinery and the BluVein slotted rail. As the vehicle moves through an inclined underground tunnel or along a pit ramp, the Hammer maintains the electrical connection even over rough road conditions. Operator assist controls, such as smart auto connect and disconnect functionality, are also incorporated.

BluVein is the ‘next generation’ of trolley assist technology with all the benefits and none of the negatives of the old systems.

IM: How long and steep an uphill climb is required, on average, to make the business case work in the favour of BluVein technology over your typical battery-only system? When does the TCO equation tip in favour of your solutions over other trolley systems on the market?

JO: Typical battery systems are super high cost when you consider the full impact of charge bay infrastructure, numerous large operating batteries per vehicle and rapid battery life decay. BluVein, however, has a relatively low capital cost in comparison as it enables smaller, lighter and lower power on-board batteries to be used that never require swapping or static charging.

Therefore, from day one, the TCO for BluVein will likely be favourable compared to typical battery-only systems, regardless of haul length.

IM: Are BluVein Hammer or BluVein Rail already installed at mine sites around the world? What models of machines have they been integrated on?

JO: The underlying technology for the BluVein Rail and Hammer has been developed over the past 11 years with EVIAS for electrified highways. BluVein is the adaptation of this technology specific to the harsh conditions found within mining.

The BluVein system has been designed to suit nearly all current mining battery-electric vehicles so that a single BluVein Rail installed in a mine can power the entire fleet, even if that fleet is comprised of mixed OEM machinery.

A working EVIAS system has been installed in an open highway setting in Sweden, but no mining applications exist at this point. As mentioned, BluVein will have a pilot site underway by the end of 2021.

IM: Given a Volvo TA15 all-electric hauler is pictured on your website, are you also working with open-pit miners on this collaboration?

JO: BluVein is not just suited to underground applications, however, initially that is the focus given the urgency around eradicating diesel emissions and particulate matter and its carcinogenic properties.

BluVein pilot site concept – simulated underground

BluVein has strong application in open-pit mining and in quarry environments to reduce greenhouse gas emissions and improve productivity and costs. The technology can leverage all the same advantages seen underground in open-pit applications. The bonus with underground is we have free infrastructure to hang the rail from.

A number of our partner mining companies are assessing the BluVein system for both surface and underground deployments.