E-Tech Resources Inc has signed a Memorandum of Understanding (MoU) with Novamera Inc to evaluate the use of surgical mining and Novamera’s technologies as the extraction method for its Eureka project in Namibia.
The MoU sets out a series of milestones that include a conceptual surgical mining economic desktop evaluation (commencing immediately), Guidance Tool calibration activities and a bulk sample. The parties are planning to initiate these activities over the next 12 months.
The solution could provide a more cost-effective and faster path to production, while also radically reducing environmental and social impact, E-Tech says. It aligns well with E-Tech’s values of being a sustainable and responsible company with the goal of supporting the green energy transition.
The Eureka project focuses on two rare earth elements (REEs), neodymium and praseodymium. The project’s mineralogy, processability and favourable logistics have the potential to make it one of the simplest and most accessible sources of REE supply to the global market, according to the company.
Todd Burlingame, E-Tech CEO, said: “E-Tech is advancing the development of the Eureka deposit by utilising innovative and leading-edge technology. The minerals of the future will require techniques and approaches that are in line with the ESG principles of their end use. We believe that Novamera’s technologies are revolutionary and E-Tech is thrilled to be at the forefront of exploring new mining methods.
“We are committed to finding sustainable and cost-efficient ways to mine the materials essential for building a low carbon economy, while also protecting and preserving the environment.”
Dustin Angelo, Novamera CEO, said: “We are excited to be working with E-Tech and demonstrating the capabilities of our surgical mining technologies. Mining companies like E-Tech are looking for solutions to bring deposits into production with a smaller environmental footprint than that of conventional mining methods. The willingness to look at a different business model will open more strategic options to generate value for their shareholders and realise positive cash flow sooner for a project.”
Novamera’s proprietary hardware and software seamlessly combine with conventional drilling equipment, allowing mining companies to surgically extract deposits while minimising dilution, according to the company. Real-time data, machine learning and production analytics drive the ‘surgical mining cycle’ to make extraction of complex, narrow-vein deposits not only viable but highly profitable.
A low capital expenditure solution requiring minimal mine development, surgical mining presents miners with a flexible, scalable mining method that can help get into ore quickly with small-scale deposits, it says.
Working together with conventional drilling equipment and operations, the solution generates circa-95% less waste and less than half the greenhouse gas emissions of selective mining methods, according to Novamera. In addition, a closed-loop system is employed to minimise water discharge and real-time backfilling reduces environmental impact and tailings storage needs.
A 2021 proof of concept was designed to test the entire surgical mining system and process, which is made up of three steps. This includes drilling a hole with a standard NQ-sized diamond core rig and sending Novamera’s proprietary guidance tool down through the core barrel on wireline to image the orebody in high resolution and with close spacing; bringing in a large-diameter drill, coupled with the company’s course correction device and positioning control system, to drill to depth following the trajectory provided by the guidance tool and transporting the cuttings using reverse circulation air-lift assist; and backfilling the holes thereafter.
The latest in-field demonstration, completed in late 2022, took place in Baie Verte, Newfoundland, at the same Signal Gold-owned site (the Romeo and Juliet deposit). The trial highlighted the technical capabilities of the guidance tool, the operational impact of real-time data in a production setting and the economic potential of surgical mining, according to Novamera.
Carried out under the auspices of the Canada Mining Innovation Council (CMIC), the demonstration highlighted to the sponsors – OZ Minerals, Vale and an unnamed global gold producer among them – that the guidance tool was integral to effective surgical mining.
In terms of the next steps for the technologies, Angelo told IM back in June that the company was keen to fabricate a “course correction device” able to compensate for the impacts of gravity on drilling such holes and the rock dynamics at play, equip the drill rig with a 2-m-diameter cutting head (as opposed to the 1-m-diameter head used in the proof of concept), prove out the guidance tool at a number of sites to build up a “geological database” and then get to a full production test at a chosen mine site.
Such a mine site test was confirmed around this time after the Government of Canada announced the 24 recipients of support selected through the Mining Innovation Commercialization Accelerator (MICA) Network’s second call for proposals. Novamera was named within this select pool, with the government granting it C$850,005 ($643,984) for a project to deploy its surgical mining technologies at the Hammerdown mine site, in Newfoundland, Canada, a site owned by Maritime Resources.