Orica has announced the release of what it says is its most innovative fragmentation monitoring solution yet, FRAGTrack™ Gantry.
The company calls FRAGTrack Gantry a market-first haul truck measurement solution that combines real-time oversize detection alerts and accurate particle size distribution (PSD) of fragmentation on all models and sizes of haul trucks.
The new product combines the success of the existing suite of automated post-blast fragmentation monitoring solutions – covering the original FRAGTrack release and the release of FRAGTrack Crusher earlier this year – and the feedback from customers experiencing loss of production due to crusher blockage.
FRAGTrack Gantry uses advanced machine vision and machine learning technologies to enable autonomous triggering and processing, without interfering with the haulage operation, Orica claims
It leverages real-time oversized detection through artificial intelligence (AI), with the machine-learning capability applied to real-time detection accomplished within seconds, with alerts syndicated via Fleet Management Systems (FMS), email or SMS for the re-routing of trucks. Operators can also predetermine customisable oversize limits, enabling a reduction in crusher blockage/damage frequency due to oversize material, the company says.
Orica Vice President – Digital Solutions, Raj Mathiravedu, said: “The full adoption of AI technology into our architecture, coupled with our strategic partnership with Microsoft, allows us to expedite the delivery of capabilities that were not previously possible, and FRAGTrack Gantry is another example of how we are leveraging AI to help deliver intelligence and value to our customers.”
The reliable and accurate fragmentation information from FRAGTrack Gantry enables customers to optimise their drill and blast operations for downstream processes without impacting the haul circuit operation, Orica says. The addition of a Gantry option complements the suite of FRAGTrack measurement systems currently available for shovel-, crusher- and conveyor-mounted configurations.