Tag Archives: hot briquetted iron

Vale makes headway on low-emission iron ore briquette development

Vale says it has successfully tested a new type of iron ore briquette, adapted for the direct reduction route, which will contribute to the decarbonisation of steel production.

The new type of briquette, which will support the steel industry’s efforts to meet emission reduction targets worldwide, emits about 80% less CO2 compared with pellets in its manufacture, abating the company’s direct and indirect emissions (Scope 1 and 2). The briquette can also be used as a charge for the blast furnace (BF-BOF).

Direct reduction is one of the routes used in steel production. It is considered cleaner than the blast furnace route as it uses natural gas instead of coke – an input obtained from coking coal – and, therefore, emits less carbon and other greenhouse gases (GHG).

The production of briquette meets the trend of the steel industry to increasingly adopt the direct reduction route, Vale says. Studies show that for every tonne of steel produced in the blast furnace, two tonnes of CO2 are emitted, while in direct reduction, carbon emissions fall to 0.6-1 t.

In recent months, Vale has stepped up development of a new type of briquette for this route. So far, seven experimental tests have been carried out at plants for different clients in the Americas. The tests, known as basket tests, have involved small quantities of briquette and pellets being placed side by side in baskets, which fed the reactors.

Rogério Nogueira, Vale’s Director of Product and Business Development, said: “With the development of this new type of briquette, Vale is taking another important step in its contribution to reducing emissions from the steelmaking chain through innovation, always in close collaboration with its clients and development partners.”

In one of the tests carried out, for example, the new product outperformed pellets in metallisation, reaching a metallic iron content of around 98%, while pellets reached 95%. This result indicates that the new type of briquette can improve the productivity of steel mill clients, Vale says.

The briquette also performed well in terms of disintegration. In one of the tests, for example, around 7% of fines were generated, against 14% with the use of pellets. The smaller presence of fine particles as a result of the disintegration facilitates the passage of the gas through the reactor, increasing productivity and reducing the consumption of this fuel, which contributes to reduced carbon emissions.

The next step in the development of the direct reduction briquette is to carry out industrial tests, which should begin in June, in a reactor of a client in North America.

Announced by Vale in 2021 after about 20 years of development, the briquette is produced from the agglomeration of iron ore at low temperatures using a technological solution of binders, which gives the final product high mechanical strength. Therefore, it emits less pollutants and GHG when compared with traditional agglomeration processes (pelletisation and sintering).

The briquette can substitute any direct load (sinter, granulates and pellets) in the steel mill furnaces, according to Vale. The substitution of the sintering stage in the blast furnace route is what allows the potential reduction of GHG emissions by up to 10%. This route is the most used worldwide, while direct reduction is more common in regions with abundant natural gas at competitive prices, such as the Middle East, North America and Argentina.

To be produced, direct reduction agglomerates (briquettes and pellets) require iron ore with a higher content, approximately 67% Fe, alongside low rates of contaminants such as silica and alumina. Agglomerates for blast furnaces can be produced with ore grades lower than 65% Fe.

Vale says it is working to increase its production of high-quality iron ore and expand its capacity to concentrate ore, which also raises the iron ore grade, enabling the company to meet demand from steelmakers for these products.

The company is building two 6 Mt/y briquette plants at its Tubarão Unit in Vitória, Espírito Santo, Brazil. Start-up of the first plant is planned for the end of the first half of the year, while the second should begin operations at the end of the year.

In addition, memorandums of understanding have already been signed with more than 30 customers to study the implementation of decarbonisation solutions, including the construction of briquette plants located on the premises of some customers.

Among the agreements signed, three aim to install Mega Hubs in Middle Eastern countries (Saudi Arabia, United Arab Emirates and Oman) to produce hot-briquetted iron (HBI) to supply both local and seaborne markets, with a significant reduction in CO2 emissions. At the hubs, Vale is expected to build and operate iron ore concentration and briquetting plants, supplying the feed for the HBI plants, which will be built and operated by investors and/or customers. Vale is also studying the creation of similar hubs in Brazil.

Iron ore briquette contributes to achieving Vale’s commitment of reducing its Scope 3 net emissions by 15% by 2035. The company also seeks to reduce its absolute Scope 1 and 2 emissions by 33% by 2030 and achieve neutrality by 2050, in line with the Paris Agreement ambition to limit global warming below 2°C by the end of the century.

Metso Outotec helps steel sector decarbonise with next gen Circored process

Metso Outotec says it is introducing the next generation of its CircoredTM process for the direct reduction of iron ore fines using hydrogen as a reducing agent instead of CO produced from fossil fuels.

This new process will allow the iron and steel industry to efficiently tackle the decarbonisation challenge, according to the company.

The flexible Circored process, part of Metso Outotec’s Planet Positive portfolio, produces highly metalised DRI (direct reduced iron) or HBI (hot briquetted iron) that can directly be used as feed material in electric arc furnaces for carbon-free steelmaking.

Attaul Ahmad, Vice President, Ferrous and Heat Transfer at Metso Outotec, said: “We are very excited about the Circored process. It is an emissions- and cost-efficient alternative to traditional steelmaking routes. This innovative process eliminates the need for costly and energy intensive pelletising, and its functionality and performance have been proven in an industrial-scale demonstration plant.

“Now our team of experts has evolved the process further, and we will present the updated technology at the 2021 Dubai Steel & Raw Materials Hybrid Conference on December 8th. Additionally, during the first (March) quarter of 2022, we will be revealing further ground-breaking additions to Circored capabilities – the key word being low-grade ore – so please stay tuned for these exciting developments.”

The Circored process is based on the fluidised bed knowledge and experience developed and applied by Metso Outotec over decades in hundreds of plants for different applications. The process applies a two-stage reactor configuration with a circulating fluidised bed followed by a bubbling fluidised bed downstream. The typical plant capacity is 1.25 Mt/y per line. Two or more lines can be combined using joint facilities and utility areas. In standalone plants, the produced DRI is briquetted to HBI to enable further handling and safe transport.

If a Circored plant is integrated into an existing steelmaking facility, energy efficiency can be further increased by direct hot feeding of the DRI to an electric arc furnace, according to Metso Outotec.

As a general rule, the Circored process can handle feeds with a particle size of up to 2 mm. However, depending on the decrepitation behaviour, particle sizes of up to 6 mm are possible. For processing ultrafine (< 50 µm) ores or process reverts like scrubber dust, Metso Outotec has patented a microgranulation process.

Rio’s IOC to supply high-grade iron ore for low-carbon steel feedstock project

Rio Tinto, Paul Wurth SA and SHS-Stahl-Holding-Saar GmbH & Co (SHS) have signed a memorandum of understanding to explore the production of a low-carbon steel feedstock.

This partnership brings together a leading global miner, an international leader in the design and supply of engineering solutions for integrated steelmakers and one of Europe’s best-known steelmakers, Rio said.

The partnership will explore the viability of transforming iron ore pellets into low-carbon hot briquetted iron (HBI), a low-carbon steel feedstock, using green hydrogen generated from hydro electricity in Canada.

Iron Ore Company of Canada (IOC), in which Rio Tinto holds a majority interest, will supply high-grade iron ore and expertise in mining, processing and pelletising. Paul Wurth brings expertise in plant building and process knowledge in the field of highly efficient hydrogen generation and MIDREX® direct reduction plants. SHS brings iron- and steelmaking expertise.

Rio Tinto’s significant presence in the Canadian provinces of Quebec and Newfoundland and Labrador makes Canada a natural location for the project, it said.

“Canada provides access to cost competitive hydro electricity, and proximity to key markets in Europe and North America,” the company said. “Transforming high-grade iron ore pellets into a low-carbon steel feedstock using green hydrogen, when processed in an electric arc furnace with carbon free electricity, has the potential to reduce significantly the carbon emissions associated with steelmaking.”

The parties will conduct a feasibility study into the potential development of industrial-scale low-carbon iron production in Canada, using the combined expertise of the three partners across the entire steel value chain. The feasibility study is scheduled for completion in late 2021, with an investment decision on a hydrogen-based direct reduction plant at industrial scale expected to follow thereafter.

IOC President and CEO, Clayton Walker, said: “This partnership is part of Rio Tinto’s climate strategy to pursue proactive and action-oriented partnerships to support the development and deployment of low-carbon technologies for hard-to-abate processes like steelmaking.

“We are absolutely committed to being part of the solution on climate change and to support our customers and other stakeholders in the steel value chain as the industry transitions to a low-carbon future.”

Georges Rassel, CEO of Paul Wurth SA, said: “By associating the different players of the metal production chain, we are confident to develop the most appropriate and efficient solutions for this challenging transition towards a carbon-neutral industry.”

Martin Baues, Member of the Board of Directors for Technology at SHS-Stahl-Holding Saar, said: “Dillinger and Saarstahl adopted a future-focused strategy with the motto ‘proactive, carbon-free and efficient’. Within this strategy, we have defined various options for the transformation to carbon-neutral steel production. The use of hydrogen in steel production is a key factor in reducing carbon emissions. This partnership can further help us to reduce our carbon emissions on the basis of this technology, while gaining important experience in using hydrogen in steel production.”

Kobe Steel demonstrates new, cleaner steel production technology

Kobe Steel says it has successfully demonstrated technology that can significantly reduce CO2 emissions from blast furnace operations, combining the technologies of Midrex in the engineering business and the blast furnace operation technology in the iron and steel business.

This achievement is a result of the integrated efforts of the Kobe Steel Group (also known as the KOBELCO Group) leveraging its diverse businesses, it said. The demonstration test was conducted for a month at a large blast furnace (4,844 cu.m) of the Kakogawa Works in Hyogo Prefecture, Japan, in October 2020.

The quantity of CO2 emissions from the blast furnace is determined by the reducing agent rate (RAR), or the quantity of carbon fuel used in blast furnace ironmaking. In the demonstration test, it was verified that RAR could be stably reduced from 518 kg per tonne of hot metal (thm) to 415 kg/thm by charging a large amount of hot briquetted iron produced by the MIDREX® Process. The results indicate that this technology can reduce CO2 emissions by approximately 20% compared with the conventional method, the company said.

In addition, the world’s lowest level of coke rate (239 kg/thm) has been achieved in the demonstration test of this technology, the company claimed.

Kobe Steel sees this as a promising solution that could become readily available soon at a lower additional cost compared with other CO2-reduction measures.

The MIDREX Process uses natural gas as the reductant and pellets made of iron ore as the source of iron to make direct reduced iron through the reduction process in the shaft furnace. In comparison with the blast furnace method, the MIDREX Process can reduce CO2 emissions by 20-40%.

The company said: “We will keep improving this CO2-reduction solution technology while further reducing CO2 emissions and achieving lower costs for CO2 reduction. Beyond our own efforts to reduce emissions from our facilities, we will strive to contribute to the acceleration of CO2 reduction through introducing this solution to blast furnaces around the world.

“In addition, we believe that the success of the demonstration test on an actual blast furnace has made a significant step forward in providing low CO2 steel products to customers. As moving forward with our environmental efforts on the scale of the whole supply chain, we will establish production and sales systems and define the terms and conditions for sales so that we can provide customers with low CO2 steel products that offer new added value.”