Tag Archives: Jeff More

MineSense Technologies launches data platform to aid mine-to-mill optimisation

MineSense Technologies Ltd has launched the MineSense Data Portal, a groundbreaking platform that, it says, leverages real-time data from ShovelSense® and BeltSense® to empower mining operators with data-driven insights for mine-to-mill optimisation.

The MineSense Data Portal is a powerful digital platform that enables access to real-time data generated by ShovelSense and BeltSense at critical points in the ore processing value chain. Along with interactive features for visualising and analysing data, the data portal provides actionable insights that mining personnel can use to optimise their entire operations – from extraction at the mine face to downstream processing in the flotation circuit.

Copper Mountain Mine, as an early adopter, had the opportunity to evaluate the MineSense Data Portal, benefitting from the combined power of ShovelSense and BeltSense systems. The mine, located in British Columbia, leverages both ShovelSense and BeltSense applications across the site.

Rudolph Botha, Senior Geologist at Copper Mountain, said: “MineSense is a leader in material tracking and live material analysis, from shovels to belts. I don’t believe there’s anything in the market that matches [the MineSense Data Portal’s] capabilities in terms of tracking grades and accurately monitoring material.”

Jeff More, President and CEO of MineSense, said: “The MineSense Data Portal empowers mining operations to maximise the value of real-time data generated by our ShovelSense and BeltSense technologies, offering the mine enhanced visibility to optimise end-to-end operational processes and unlock their full potential.”

Frank Hoogendoorn, Chief Data Officer at MineSense, added: “MineSense is committed to helping mines in their digital transformation journey by not only providing completely new datasets for process optimisation, but also in providing advanced tools to fully unlock the value of those datasets. We’re excited that the new data portal gives mine operators far greater visibility into their mill feed and is packed with features that help them make more informed decisions to improve both profitability and sustainability.”

Key features of the MineSense Data Portal highlighted by the company include:

  • Real-time tracking of grades from digger buckets, trucks and conveyor belts
  • Summary of trucks redirected by ShovelSense
  • System availability monitoring and spare parts inventory
  • Three dimensional visualisations of bucket and truck grades for mine planning insights
  • Ore tracking dashboard of ShovelSense and BeltSense grades and material types for mill process optimisation; and
  • Customised layout tailored to each unique mine.

MineSense continues growth trajectory with new South America HQ in Chile

MineSense Technologies officially opened its regional headquarters and service centre for South America in Santiago, Chile, this week, in another move to capture growth across one of the world’s key mining hubs.

Attended by senior executives and a MineSense workforce of over 50 hired so far in Chile and Peru, the ceremony celebrated the opening of a 3,000 sq.m facility in an industrial park in the Pudahuel district.

The headquarters includes corporate offices and a manufacturing area that increases service and production capacity to supply ShovelSense technology to meet South American and global demand, the company said.

Jeff More, President and CEO (pictured on stage), was on hand to cut the ribbon. He was joined by Victor Aguilera, member of the Board of Directors of MineSense Technologies Ltd and General Director of Aurus Investments; Claudio Toro-Salazar, Executive Vice President, Business Development; and Monica Feregrino, VP Operations.

MineSense, through the deployment of its ShovelSense solution, has been gaining ground in the bulk ore sorting space across South America.

Earlier this year, it deployed a second shovel-based unit at Teck Resources’ Carmen de Andacollo mine, in Chile. This followed an earlier successful trial at the operation.

It has also recently gone live with a deployment at Antamina, Peru’s largest mine, and has been trialling the XRF-based technology at Hudbay Minerals’ Constancia mine, also in Peru.

The ShovelSense system, through a sophisticated suite of sensors and algorithms, improves orebody visibility bucket by bucket in real time during the loading process, according to the company. Trucks are then automatically diverted to the correct location, increasing value and revenue realised during the mining process. The technology also creates reductions of CO2 emissions per tonne of ore produced, consumption of processing chemicals and reagents, energy and water, while maximising metal recovery, MineSense says.

To support mine site operations and their ore decision making, MineSense also provides 24/7 data room technical support for continuous monitoring of all elements of system performance.

New Gold to collaborate with MineSense in underground ore sorting move

MineSense is gearing up for a move underground with the help of New Gold and its New Afton gold-copper mine in British Columbia, Canada.

The Vancouver-based technology company has already established and proven its ShovelSense technology for the open-pit mining sector, with its X-ray Fluorescence (XRF) sensor-based system now operating on shovels, wheel loaders and excavators on a commercial basis across six operating mines. This includes large installations at Teck’s Highland Valley and Copper Mountain’s copper operations in BC, as well as one ShovelSense unit at the Antamina copper operation in Peru.

Designed for operation in extreme environments and retrofits on any existing mobile equipment, ShovelSense units come equipped with a human machine interface and proprietary algorithms that measure and report ore grade/characteristics. They can also connect directly to fleet management or other existing control software systems, enabling mine operators to reconcile geological block models with actual ore grade data.

Having finetuned the system for above-ground operations, the company is now embarking on its underground move, according to MineSense President and CEO, Jeff More.

A trial of the underground ShovelSense system at New Gold’s New Afton mine is first up to complete product development. The company will be installing a unit on a Cat R1600G LHD for this step. This will be followed closely by installation at a “large entity” in Chile – with More anticipating start up in the September or December quarter.

The development agreement with New Gold at the BC-based mine is looking to trial and finetune the system for underground operations, with More confident the ShovelSense system will stand up to the test.

“The core technology – all of the algorithms, software, hardware – is the same as ShovelSense for open-pit mining,” More said. “It is the ‘application package’ – looking at how we can attach the unit to the machine and protect it in an underground environment – that is what we have to test out. The design for this is already complete; it’s just a matter of trialling it.”

New Afton represents a good test for the system.

New Afton is Canada’s only operating block cave mine, with the New Afton deposit part of a larger copper-gold porphyry district in the region. The operation regularly mines 15,000-16,000 t/d of ore and waste, with the majority of this currently going to the mill.

The company has already pursued “ore segregation” projects to boost the grade of material being fed through to the processing side, but the move into the higher-grade C-Zone in 2023-2029 will place an even greater emphasis on ore/waste boundaries and milled tonnes at the operation.

At the same time, the ShovelSense deployment at New Afton will represent the first time MineSense has sent a unit into a mine that has so much payable gold, with most operations the company has worked on being primarily base metal-oriented.

In 2020, New Afton produced 64,000 oz of the yellow metal, along with 32,659 t of the red metal.

“This will be the first time we’re touching gold at this level; we have other mines that have payable gold but not at that level,” More explained.

In New Afton’s case, sampling and historical data has proven that the orebody’s copper and gold ratios tend to be consistent and unchanging over the long term. With this knowledge, New Afton has used technology in the past to determine the copper value and make ore/waste production decisions. ShovelSense allows New Afton to move the ore/waste production decision to the drawpoint, according to MineSense. This reduces mixing and blending during the crushing and conveying circuit which can homogenise the material to the point where it is not worth segregating.

Trialling new technology such as this is nothing new for New Afton.

The operation already uses automated loading through Sandvik’s AutoMine solution, is employing electrification with the use of Sandvik and MacLean Engineering battery-powered mobile equipment, and, in the process plant, has Gekko Systems’ highest volume InLine Pressure Jig IPJ3500 to improve gravity concentration.

More says the ShovelSense unit could be in the Cat LHD bucket at New Afton in August, with the machine then going through an above-ground trial ahead of the underground transition at the end of September.

“By early Q4, we should have completed the pilot,” he said.

MineSense to expand XRF ore sorting presence at Copper Mountain mine

MineSense Technologies says the use of its ore characterisation and sorting technology is seeing improvements in both the ore from waste recovery and ore dilution at Copper Mountain Mining Corp’s namesake mine in British Columbia, Canada.

Having deployed the company’s ShovelSense solution on two shovels and a wheel loader in 2020, Copper Mountain now has plans to install ShovelSense on the two remaining shovels in 2021, along with the first trial installation of BeltSense to explore additional innovation concepts, Don Strickland, Chief Operating Officer at Copper Mountain Mining Corp, said.

Jeff More, President and CEO of MineSense Technologies, said: “Copper Mountain has been a fantastic partner to work with, initially to support us in our scale-up on hydraulic shovels, and then with rapid commercial deployment once the design was stabilised.

“We are thrilled that they installed three of our ShovelSense Systems in the space of five months in 2020 and will complete installation of their entire shovel fleet in 2021.”

The MineSense hardware and software went through a two-year evaluation process at Copper Mountain prior to the solution going commercial, Copper Mountain stated in a recent technical report.

The ShovelSense system improves orebody visibility bucket by bucket in real time during the loading process, according to the company. Trucks are then automatically diverted to the correct location, increasing value and revenue realised during the mining process. The technology also creates reductions of CO2 emissions per tonne of ore produced, consumption of processing chemicals and reagents, energy and water, while maximising metal recovery.

BeltSense, meanwhile, is used on conveyance at different points of the mine operation. It can be used sequentially and in conjunction with ShovelSense to maximise the ore concentrating impact, taking a first cut at the haul point and second further downstream, MineSense says.

Both systems leverage X-ray Fluorescence sensors to carry out the sorting process.

MineSense senses further mining commercialisation opportunities in 2021

MineSense, having continued the introduction of its transformative technology into mines in 2020, says it is well positioned to dramatically ramp up commercialisation of its sensor-based ore data and sorting solutions in 2021.

The company’s solutions are focused on improving mine profitability by taking advantage of the maximum heterogeneity at the face to increase ore recovery and minimise waste processed, it says. “This profit improvement is even more critical as mines work to recover profits lost due to COVID-19 impacts in 2020,” it said.

MineSense started the year by closing a $25 million equity financing led by BDC’s Industrial Innovation Venture Fund to ramp up commercialisation and further expand operations globally.

It followed commercialisation at Teck’s Highland Valley Copper mine, with commercialisation of three new ShovelSense® systems at Copper Mountain Mining’s Copper Mountain mine, in British Columbia, Canada, in 2020. MineSense said it has been embedded into the mine’s operating practices and is included as an enabling technology in their latest NI 43-101 Technical Report.

In this report, Copper Mountain said the system’s primary goal is to direct the right material to the right destination; that is, ore to the primary crusher and waste to the waste dump.

It said the two-year evaluation period with MineSense hardware and software on three of its five loading units at Copper Mountain Mine had accomplished two objectives:

  • Selective recovery of economic copper ore from defined non-economic rock – approximately a 4% improvement; and
  • Selective rejection of non-economic rock from defined economic copper ore – approximately a 4% improvement.

MineSense’s global growth has been  supported by local field services teams who normally work at mine sites. COVID-19 presented new challenges including restricted site access, but the MineSense team overcame this, executing the first remote installations of ShovelSense systems this year.

“The flexibility and innovation by our field services and customer’s operations teams was instrumental for us in going live with multiple operating systems in Chile and Peru,” MineSense’s EVP Business Development, Claudio Toro, said.

The MineSense ShovelSense System improves orebody visibility bucket by bucket in real time during the loading process, according to the company. Trucks are then automatically diverted to the correct location, increasing value and revenue realised during the mining process. The technology also creates reductions of CO2 emissions per tonne of ore produced, consumption of processing chemicals and reagents, energy and water, while maximising metal recovery.

Frank Hoogendoorn, Chief Data Officer at MineSense, said: “We are excited to provide mines with new, data driven capabilities for sorting ore and waste. Our sensors and on-board machine learning based algorithms provide real-time bucket grades at the earliest point in the extraction processes, which enables mines to extract ore more precisely and optimise downstream processes at a resolution that previously was out of reach.”

To support mine site operations and their ore decision making, MineSense now provides 24/7 data room technical support for continuous monitoring of all elements of system performance. To track value creation, customers access their data through MineSense’s Client Portal. “This consists of data- rich visualisations of ore/waste diversions, real-time grade data and operational diagnostics,” the company says. “This information assists grade control engineers and metallurgists in mine planning, downstream operations, and overall reconciliation.”

MineSense President and CEO, Jeff More, said the mining industry was undergoing a transformation in technology and, “through its technological innovation, MineSense is able to build upon the digital and data ecosystem and create visibility where it didn’t exist before”.

MineSense front and centre in bulk ore sorting game

Having just commercialised its bulk ore sorting technology at Teck Resources’ Highland Valley Copper (HVC) operations in British Columbia, Canada, MineSense is looking to show the wider industry just how effective this pre-concentration process can be.

IM spoke with President and CEO, Jeff More, to find out more about the company’s ShovelSense and BeltSense technologies and how the Vancouver-based startup has been able to secure investment from the likes of ABB, Caterpillar and Mitsubishi.

IM: Can you explain in a little more detail how your ShovelSense and BeltSense solutions work?

JM: The base technology for both is X-ray Fluorescence (XRF) – a technology that has been around for some time. What we have done to this existing technology, which is quite unique, is three things:

  • One, we have extended dramatically the range of XRF. Traditionally XRF would almost have to be held to the surface of a rock to get accurate measurements. The range extension allows us to work in the shovel environment where we are working across metres of volume;
  • Second is speed. Our system is extremely fast. High speed analysis is required on our conveyor belt applications, but this is even more important in the shovel, where we’re measuring dynamically; as the material is flowing into the shovel, to get a representative reading, you have to be able to take very fast readings of the material as it is moving past the sensors;
  • The third is robustness. On a shovel, you are in a nasty environment from a shock and vibration perspective. We developed a system with sensitive components – the XRF itself, as well as the computing devices around it – that can stand up to that very high shock- and vibration-type environment.

IM: The most high-profile examples of the application of your ShovelSense technology have been at copper mines (HVC, in particular); is the detection technology particularly effective in these ores? Is it being trialled elsewhere?

JM: The current sensing we have with the XRF is very effective in a certain section of the periodic table, which nicely covers the major base metals. We’re focused on copper, nickel, zinc and polymetallic versions of those three. The fourth area of focus is iron ore.

We’ve selected copper as our first focus because of the size of the market and the geography. We have done most of our work in copper, but we now also have operating systems in nickel and zinc.

On a lab scale, the technology has been very effective in iron ore, but iron ore is a very different flow sheet, so we have purposely set it as our fourth market in what we call our primary clusters.

We have five mine site customers at the moment – three copper, one zinc-lead and one nickel-polymetallic.

We were very much focused on North America and, in particular, British Columbia for our first pilots and trials as it was quite easy for us to service in our back yard. The first international market was Chile, for obvious reasons in terms of copper production, and we now have a full MineSense entity and team operating in Chile and Peru.

We’re staggering the rest of our global expansion. We’re now quite active from a business development perspective in southern Africa – South Africa, Zambia, DRC – and have activity in Australia.

We have Systems installed at two different copper mines in British Columbia, one at a very large nickel-polymetallic complex in Sudbury, Ontario, and will have a fourth system operating in Alaska. We also have two mines, but four systems, operating in Chile. By the end of Q2, we will have another three systems operating in Chile.

We did all our development work for the system at Teck’s HVC operation and we’re now completely commercial there. We officially commissioned our first system in December, the second system is being commissioned as we speak and the third and fourth will be installed and commissioned in late-March. This will completely equip their fleet.

IM: Teck has previously said the use of ShovelSense has resulted in “a net measurable increase in the amount of ore (and the associated head grade)” it has available to feed its mill at HVC. Are these results in keeping with your expectations for the technology?

JM: Yes, absolutely. We base everything on, what we call, our value model. Very early in our engagement process, we set out a detailed model that calculates the profit improvement that mine will see – we did the same for Teck HVC.

We agreed on a target at HVC and are actually exceeding that estimate. Most importantly, Teck is also seeing that value and is estimating a great overall impact at that mine.

This is an abridged version of a Q&A to be published in the ore sorting feature in the March issue of International Mining.