Tag Archives: Magotteaux

CEEC Medal recipients recognised for pushing lower footprint mineral processing

Two standout research and field work contributions that have the potential to improve environmental, social and governance (ESG) performance across industry have been awarded the highly respected CEEC Medal for 2020.

Attracting a record 23 high-quality nominations from across the globe, the shortlisted Operations and Technical Research papers showcased exciting site improvements and innovative ideas for future technologies, according to the Coalition for Energy Efficient Comminution (CEEC).

Now in its ninth year, the CEEC Medal recognises the best published papers that raise awareness of comminution research findings, alternative comminution strategies and installed outcomes.

CEEC Director and Medal Evaluation Committee Chair, Dr Zeljka Pokrajcic, said this year’s nominations reflected industry trends to install renewables, consider embodied energy and emissions, and the continued embracing of technologies such as pre-concentration and coarse flotation.

“It’s rewarding to see how industry leaders and experts are collaborating to forge improvements that make good business sense and proactively improve efficiency,” Dr Pokrajcic said.

The 2020 recipients are:

Operations

Peter Lind and Kevin Murray of Newmont and Alan Boylston and Isaias Arce of Metso Outotec, (formerly Metso), for their paper titled, ‘Reducing Energy and Water Consumption through Alternative Comminution Circuits’. This was presented at the 7th SAG Conference in Vancouver, Canada, in 2019.

Technical Research

Dr Grant Ballantyne (pictured), for his paper titled, ‘Quantifying the Additional Energy Consumed by Ancillary Equipment and Embodied in Grinding Media in Comminution Circuits’. This was also presented at the 7th SAG Conference in Vancouver.

Dr Pokrajcic said the winning Operations paper from Newmont/Metso Outotec documents a successful miner/vendor collaboration on how to assess the comminution circuit options in a low energy and water environment.

The paper considers a typical case of a low grade, bulk tonnage copper-gold orebody in an arid climate (Chile, South America) with significant energy costs. It brings together important solutions – including energy-efficient comminution, ancillary equipment, preconcentration and flotation – and presents compelling economic comparisons.

CEEC CEO, Alison Keogh, said of the paper: “This global knowledge sharing offers real value for decision-making across the globe. The paper’s practical, systematic technology approach, which incorporates all-important financial analysis, has the potential to accelerate industry’s progress to deliver lower footprint minerals.”

The paper’s co-authors, Lind and Boylston, explained that the work was the result of collaboration between many innovative thinkers, with ideas and approaches built over many years.

“We wanted to make a difference, to bring technologies together to show that you can save energy, save water and save money as well. This was a group effort, not only by our extended teams at Newmont and Metso Outotec, but also involving Steinert and Scantech in working through how to apply technologies,” they said.

The CEEC Medal Evaluation Committee praised the winning Technical Research paper from Dr Ballantyne as being “an impressive approach to capturing and quantifying energy consumption of ancillary equipment and energy used to manufacture and transport grinding media”.

The paper shares insights on embodied energy using data collected from sites and presents results on the CEEC Energy Curves.

“The research presents a broader approach that considers the impacts of not just energy used in particle breakage but also embodied energy in the manufacture and transport of grinding media, and energy used in the operation of ancillary equipment such as conveyors and pumps,” Dr Pokrajcic said.

“Bringing this spotlight to embodied energy has strategic value. Many companies are including investigation of supply chain in their procurement decisions.”

Dr Ballantyne, previously a Senior Research Fellow at the Julius Kruttschnitt Mineral Research Centre (JKMRC), and now with Ausenco, noted that his work started in 2012, building on earlier concepts shared by industry at a CEEC workshop in Australia. These concepts were developed further following industry input at the 2015 SAG Conference in Canada.

“I also acknowledge the inspiration and collaboration of Chris Greet (Magotteaux), Evert Lessing (formerly Weir, now Metso Outotec), Malcolm Powell (formerly The University of Queensland) and Greg Lane (Ausenco) for contributing expert input and data to the work,” Dr Ballantyne said.

“New research ideas and collaboration with industry are key to industry innovation,” he said. “Support and mentoring from these suppliers as well as experts from Ausenco and The University of Queensland ensured these new ideas could be published for industry to progress thinking.”

In addition to the two CEEC Medals awarded in 2020, three publications received High Commendations.

High Commendations – Operations

Ben Adair, Luke Keeney, and Michael Scott from CRC ORE, and David King from Minera San Cristóbal operations, for their paper titled ‘Gangue rejection in practice – the implementation of Grade Engineering® at the Minera San Cristóbal Site’. This was presented at Physical Separation 2019, in Cornwall, United Kingdom.

This paper shares the prediction and outcomes of a Grade Engineering pilot at Sumitomo’s Minera San Cristóbal operations in Bolivia. The work identifies ore amenability and levers to optimise up-front rejection of gangue before processing.

Keogh said: “This approach highlights the scale of the opportunity for mining leaders to invest in unlocking hidden value for shareholders through productivity step-change while significantly reducing impact on the environment.”

High Commendations – Operations (continued)

Malcolm Powell, Ceren Bozbay, Sarma Kanchibotla, Benjamin Bonfils, Anand Musunuri, Vladimir Jokovic, Marko Hilden, Jace Young and Emrah Yalcin, for their article titled ‘Advanced Mine-to-Mill Used to Unlock SABC Capacity at the Barrick Cortez Mine’. This was presented at the 7th SAG Conference in Vancouver.

This work was a collaboration between three organisations: JKMRC at The University of Queensland’s Sustainable Minerals Institute, Barrick’s Cortez mine and JK Tech. It shares an advanced mine-to-mill approach that unlocks improved SABC production capacity at Barrick’s Cortez mine in Nevada, USA.

Dr Pokrajcic said the article was an excellent review of the dynamic between SAG and ball mills, illustrating how mine-to-mill, with the consideration of blast movement as well as fragmentation, and operation-wide optimisation could empower sites to identify and sustain long-term improvements.

“It highlights the opportunity of operationalising cooperative ore blend control to balance energy use across the milling circuit, reducing specific energy consumption while benefitting from increased production,” she said.

High Commendation – Technical Research

Paul Shelley and Ignacio Molina (Molycop) and Dimitrios Patsikatheodorou (Westgold Resources), for their paper titled ‘SAG mill optimisation insights by measuring inside the mill’. This was presented at the Procemin-Geomet Conference in Santiago, Chile, in 2019.

In a first for industry, this innovative approach aims to collect data from sensors inside the grinding balls within grinding mills, CEEC said. It brings potential application for high frequency measurement of temperature and impacts inside the mill.

Dr Pokrajcic said: “If this early work can be successfully commercialised and scaled up, it could bring new insights that link to operational and energy efficiency improvements.”

Keogh said nominations for the 2021 CEEC Medal were now open, and she encouraged the submission of relevant, ground-breaking articles from online events and industry presentations.

“Because of disruptions to physical events, we have extended the closing date for submissions to October 30, 2021.”

Details of the application process for the 2021 CEEC Medal can be found here.

Robotics and automation projects among latest METS Ignited funding recipients

Australia’s Minister for Industry, Science and Technology, Karen Andrews, has announced seven mining supply businesses as the recipients of A$4.1 million ($2.9 million) in innovation funding under the METS Ignited Collaborative Project Funds.

The recipients of the funding will now be able to launch eight collaborative industry projects delivering highly-advanced solutions to a variety of mining challenges and contribute to the growth and capability of the METS sector, according to METS Ignited.

This funding is part of a four-year, A$15.6 million commitment made by the Australian Government to incentivise collaboration and address METS sector priorities. The funding established the METS Ignited Collaborative Project Funds, which support industry-led projects to improve the productivity, competitiveness and innovative capacity in the METS sector.

Today’s announcement at Mineral Technologies, on the Gold Coast of Australia, is the third tranche of funding. METS Ignited received 26 grant applications and has awarded the funds to businesses specialising largely in robotics and automation, data analytics, data platforms, Internet of Things and business and professional services. The recipients are: Mineral Technologies, Premron, Austmine, Roobuck, Process IQ, AMOG (x2) and Magotteaux.

Acting CEO of METS Ignited, Ian Dover, said: “Active collaboration across the ecosystem is core to accelerating commercialisation of innovation and has been lacking in the METS and mining sector, where historically relationships have been in the main transactional.”

“Facilitating such innovation is part of the mandate for METS Ignited. It’s vital we support the application of influential future technologies across the METS sector and maintain Australia’s competitiveness.”

Recipients of the Collaborative Project Funds are required to secure equal or greater investment from an industry partner. As a result, the total value of the eight projects is A$11 million.

The largest fund recipients were Queensland-based Mineral Technologies and Premron, awarded A$1 million each. Mineral Technologies’ automation of the Roy Hill Iron Ore beneficiation plant project automates the gravity separation spiral process used in the mine to optimise the concentration of lower-grade ore into higher value ore for export, METS Ignited said.

Roy Hill CEO, Barry Fitzgerald, said: “I am delighted the government is supporting our partnership with Mineral Technologies – a project that seeks to enhance the operational efficiency of our mine, delivering more high-grade product while reducing waste for the same operational cost.”

The automation of spiral control in the Roy Hill beneficiation plant will materially improve the concentration of ore into high value product for export, according to Roy Hill. More high-grade product and less waste will be produced for the same feed and processing cost, delivering value to both the environment and Roy Hill’s bottom line, the company said. Once proven effective at Roy Hill, the technology can be commercialised and rolled out at similar operations across the world.

“This innovation project will deliver a step-change improvement through real time control of our 720 spirals, enabling our processing plant to dynamically respond to the natural variability of the material it is treating,” Fitzgerald said.

Premron’s Continuous Haulage System (CHS) project, meanwhile, will revolutionise coal mining in underground mines, according to METS Ignited. It eliminates the use of shuttle cars, used to take the coal cut from the wall of the mine to a transfer point further away in the mine (dead time). CHS will see the coal go straight to a conveyor belt and out of the mine.

Other projects that received funding in this round include: sensor technology to monitor the location of people and equipment underground; artificial intelligence technology to emulate the role of a grinding expert; automated sensor detection for oversized rocks; a predictive analytics tool that pinpoints the best time for equipment descaling; a METS career pathway programme; and a device to give more detailed information on the chemistry inside the grinding mill while it is operating.

METS Ignited said: “Collectively, the projects will benefit the mining sector by optimising the value chain, increasing productivity for mining and mineral processing, supporting and enhancing environmental management, and improving operational safety.”

The project fund recipients include:

Automation of the Roy Hill Iron Ore beneficiation plant

  • Recipient: Mineral Technologies
  • Partners: Roy Hill
  • Collaborative project funds: A$1 million
  • Industry investment: A$1 million
  • This project automates the gravity separation spiral process used in the mine to optimise the concentration of lower-grade ore into higher value ore for export.

CHS

  • Recipient: Premron
  • Partners: Gauley Robertson Australia, Kestrel coal mine
  • Collaborative project funds: A$1 million
  • Industry investment: A$1.13 million
  • Continuous haulage will revolutionise coal mining in underground mines. It eliminates the use of shuttle cars, which are used to take the coal cut from the wall of the mine to a transfer point further away in the mine. CHS will see the coal go straight onto a conveyor belt and out of the mine.

Austmine METS career Pathway Program

  • Recipient: Austmine
  • Collaborative Project Funds: A$240,000
  • Industry investment: A$1.76 million
  • This project places university students as interns in METS companies around Australia, increasing the interest level and uptake of graduates into the METS sector

The OVERwatch Platform

  • Recipient: Roobuck
  • Partners: Redpine Signals, Northparkes Mines, University of Wollongong
  • Collaborative project funds: A$600,000
  • Industry investment: A$1.5 million
  • This project develops sensors and software to track the location of people and machinery working in underground mines and ensure that collisions are avoided. This is a complex project as there is limited communication options underground (eg no Wi-Fi).

Remote grinding optimisation and support centre

  • Recipient: ProcessIQ
  • Partners: Orway Mineral Consultants, Jamieson Consulting, Curtin University
  • Collaborative Project Funds: A$620,000
  • Industry investment: A$780,000
  • This project enables grinding experts to interact directly and in real time with grinding circuits on remote mine sites to ensure they are operating at their most productive levels. The project will develop automated artificial intelligence software to emulate the experts as there is very limited supply of this specialist expertise, leading to increased processing efficiency globally.

Automated Oversize Detection

  • Recipient: AMOG
  • Partners: Omniflex
  • Collaborative Project Funds: A$150,000
  • Industry investment: A$220,000
  • This project involves developing sensor equipment that alerts the mine when rocks are too big to process through the crushing and grinding equipment. Blockages in the crushing and grinding circuits are costly and time consuming. Haulage trucks with oversized rocks will be diverted to a separate location in the mine, which avoids stoppages.

Smooth Operator leach circuit process optimisation

  • Recipient: AMOG
  • Partners: Lithium Consultants
  • Collaborative Project Funds: A$220,000
  • Industry investment: A$220,000
  • This project involves developing a predictive analytics tool that allows copper and nickel mines to pinpoint when they should close equipment for descaling. Closing equipment too late or early is very costly. There is a very large global market for this product.

Commercialisation of pulp chemistry monitor for the mining industry

  • Recipient: Magotteaux
  • Partners: Hydrix, Manta Controls, Newcrest Mining
  • Collaborative Project Funds: A$250,000
  • Industry investment: A$310,000
  • This project involves developing a device to give more detailed information on the chemistry inside the grinding mill while it is operating. Grinding and flotation circuits use many chemical inputs in order to extract minerals from the ore. Getting the chemical balance right in the mill and the next stage of floatation is critical to removing as much of the valuable mineral as possible. The percentages of the yield vary between 85% and 95% and a 1% improvement in yield will deliver a very large financial benefit to the mine.