Tag Archives: Michelle Keegan

Mining and space sectors collaborate to solve the biggest challenges

A quiet revolution is underway in the mining sector as innovations and knowledge gleaned from space exploration help improve productivity, reduce emissions and create better outcomes for workers and communities, AROSE* Program Director, Michelle Keegan, explains.

The extreme demands of Space exploration and the drive for efficiency in the mining industry is creating new forms of cross-sector collaboration not seen before. The transfer of expertise and technology between these two sectors is also delivering solutions to some of humanity’s greatest challenges.

There are many commonalities between modern resource businesses and space exploration. Both require a focus on a smaller footprint, the delivery of zero-carbon emission operations and a reliance on substantial amounts of data to support decision making. They both operate in sensitive and challenging geographic environments and need to work in a way that reduces risks to their employees and the environments in which they operate.

The space industry provides a rich learning platform for the resources sector, for new approaches to increasingly difficult challenges. But the benefits of collaboration are not all one way. The space sector too is benefitting from the technological innovations and experience of miners here on Earth.

Technology developments in exploration precision, resource planning, advanced mineral detection sensors, in-situ extraction methodologies and advanced safety systems, present opportunities for insights and application in space.

Deep thinking around regulatory frameworks for responsible and sustainable space exploration and development will be enhanced through the experiences, both positive and negative, in terrestrial resource development.

Diversity of thinking

The opportunity to transfer technology and drive diversity of thinking from the space sector into mining will accelerate in the years ahead. Global demand for the critical minerals required to meet the world’s ambitious decarbonisation goals illustrates the need to leapfrog current approaches across the mining project lifecycle, from exploration through to production.

Rio Tinto CEO, Jakob Stausholm, recently described the global mining giant as a “technology company”.¹ In saying this he recognises Rio’s success in tackling the big challenges will rely on the miner’s ability to integrate new technologies and novel approaches to problem solving.

In a world where mining is becoming more complex, more difficult and more expensive, the ability to reduce costs (and emissions) and win the support of governments and local communities will rely on the ability to deploy technology to mine and process ore more efficiently and more safely, both for people and the environment.

Many post-carbon technologies, such as solar energy and battery storage systems, have been advanced through space exploration. Also, it is the systems engineering approach to project design, pioneered for space exploration, that increasingly is being adopted by terrestrial resources, technology and services companies.

Australia’s leading mining and oil and gas operators, as well as their major service companies, are aligning themselves with space-focussed businesses, researchers and industry organisations because they recognise the value of cross-sector collaboration. This new collaboration model is leading to greater technology and expertise transfer between space and resources. Miners also recognise the benefits of their best people being exposed to new knowledge and new ways of problem solving.

Trailblazer Lunar Rover project

The AROSE consortium was created for exactly this type of collaboration – to drive the growth of Australia’s space industry and bring together companies from resources and other industries, to leverage their collective capabilities and go after the toughest challenges in new ways. The Trailblazer Lunar Rover project is a first significant focal point for our space capable businesses and like-minded resources companies to pursue shared technology opportunities.

The AROSE Resources Advisory Board, established in 2022, creates an ongoing opportunity for the most innovative mining company leaders to provide input into the rover project, while taking learnings back to their businesses at the same time.

NASA understands well the benefits of this type of collaboration. Earlier this year AROSE participated in the first of a series of workshops with NASA and the United States Geological Service to look specifically at the areas of intersect between the resources and space sectors.

The mining industry is at a turning point in its decarbonisation journey. It has a once-in-a-generation opportunity to build new capabilities that will lay the foundations for long-term, sustainably driven growth. With an aggressive timeline to zero emissions, a great opportunity for the mining industry to solve this tough challenge is the successful building of relationships with uncommon partners like those in the space sector.

However, a broader partnership opportunity exists between mining and space. The domains we see as offering the best collaboration opportunities between space and mining include:

  • Automation and robotics;
  • Remote operations and control;
  • Geoscience;
  • Satellite communications and imagery;
  • Artificial intelligence;
  • Systems engineering;
  • Waste minimisation;
  • Digital design, including user experience and user interface; and
  • Data analytics.

It is evident space and mining projects are approached very differently. The design of a resources project is most typically achieved by bringing together the experiences of past projects, with a focus on budget and schedule. Operating concept or operating philosophy often takes second priority and does not drive the project design. As a result, an integrated systems design is never achieved. And while available technology enables some level of electrification, automation and digital decision making, the value that could be derived is never fully realised.

Andrew Dempster, Director at Australian Centre for Space Engineering Research at the University of NSW, says, “the high-level difference between the approaches of the two industries is that the mining (and oil and gas) decision points are all and always commercial, whereas the agency-driven space projects have more technical ‘system engineering’ decision criteria.”²

Dempster states “a fundamental observation about the difference between mining engineering and the space engineering disciplines (electrical, electronic, software, mechanical) is that the latter designs a product…while the former designs a business. It appears this is the fundamental disconnect”.

For many years the mining industry value chain has been unchallenged. Valuable resources are mined, processed then moved to a distribution point via rail or road and then shipped to a customer. However, there are several collaboration opportunities that could lead to mining companies rethinking value chain design, and these opportunities have the potential to alter the mining flowchart.

Perhaps the ideal approach we can use in mining is an integration of both approaches, and in this way adopt systems engineering thinking at the outset.

AI and data analytics

With an increasing need to build in automation, sensing and electrification, underpinned by digital platforms, the concept of operations needs an integrated approach more than ever. The growth in the application of AI and data analytics techniques to quickly interpret geological and physical properties of rock in mining has been exponential. As data streams become more complex and decision pressures more acute the demand for more sophisticated approaches to AI will only increase.

The space industry has had an even greater need to manage and interpret a plethora of complex data in real time to support mission critical decisions and there are obvious crossover opportunities to be explored in this arena.

With the hunt underway to locate resources on the moon or other planets to extend human life into outer space, the opportunity exists for mining technology companies to assist with rock knowledge acquisition and mineralogical interpretation of data required for successful space exploration.

Robotics and automation

The application of robotics and automation is expanding in the resources sector with the drive to remove people from harm and increase efficiency and precision in the mining process. Mining technology company IMDEX was motivated to partner with AROSE as a way of bringing space insights to the development of its BLAST DOG technology (pictured below), an automated logging system that collects detailed geoscience data from blast holes.

Major challenges IMDEX faced during the BLAST DOG development phase included: autonomous navigation over rough terrain; locating and positioning accurately over a blast hole; lowering and retrieving a sensitive, high-tech probe down the hole; and managing the transfer of high volumes of data through remote communication systems. IMDEX is refining its approach based on insights gleaned from companies involved in addressing these same challenges in space.

The recent affiliate agreement between AROSE and the Robotics Australia Group will increase this application across the industry.

Autonomous vehicles

In mining, the scale of operation has been linear until recently. If you wanted to increase mining output, you purchased more large equipment. Then came the introduction of fleet automation technologies, developed first by Caterpillar in 1996 and refined in partnership with Rio Tinto and other early adopters in the early 2000s.

Of the 1.5 million vehicles in use across heavy industry globally, only 1,200 vehicles are autonomous.³ Australia has the largest fleet of autonomous haul trucks in the world, with more than 700 in operation across 25 mines.4 Clearly the market potential is enormous.

These remotely operated technologies are challenging the need for ever larger truck sizes. The largest autonomous truck today might be the last of its kind as mining organisations consider what the ‘right size’ truck is for the future.

Smaller size trucks would allow miners to fully electrify their operations much sooner. In addition to the environmental benefits, there are operational and cost benefits that support this approach. The large autonomous trucks currently in use need enormous bi-directional roads. Reducing the size of mining vehicles can have a direct impact on strip ratios, and with a mine that can be up to 1 km deep, the roads that service the mine contribute significantly to the overall footprint.

While every mine design is different, there is a growing body of evidence that smaller autonomous vehicles can lower mine development costs (narrower benches, steeper pits, etc), speed operations and boost overall fleet utilisation.

The space industry has similar challenges with its autonomous vehicles. Where the mining industry is an expert at moving billions of tonnes of material by operating hundreds of autonomous vehicles all year round, the space industry today has only operated 11 semi-autonomous vehicles on a planetary body. This observation isn’t to diminish the significant achievement, as space exploration is extremely difficult, but to highlight the convergence of terrestrial and space objectives. For the space industry to perform in-situ resource utilisation activities anywhere off-earth, there is an opportunity to adopt learnings from the mining industry.

Likewise, the mining industry is moving towards smaller more specific/targeted mining practices and can learn from space industry experience in developing small-scale highly efficient and robust robotic solutions.

The space industry also provides a rich learning platform for the resources sector for new approaches to minimise and utilise the waste stream, with the ultimate goal of zero waste mining operations.

The companies which provide technology and services to the mining majors also realise they need to diversify their offering to include space. This ‘full stack’ approach may be a matter of business survival in a competitive future.

Remote operations specialist Fugro is a leader in this area. Fugro’s new SpAARC (Space Automation, Artificial Intelligence and Robotics Control) remote operations centre in Perth, Western Australia, has been specifically designed to share facilities between its established oil and gas and mining business and its fledgling space offering.

Fugro’s new SpAARC remote operations centre in Perth, Western Australia, has been specifically designed to share facilities between its established oil and gas and mining business and its fledgling space offering

Fugro and Nova Systems are leading the AROSE consortium’s Trailblazer Lunar Rover design team. Woodside Energy and Rio Tinto are also supporting the AROSE Trailblazer effort by providing knowledge transfer of their terrestrial robotic and automation capabilities.

Woodside has also formed a collaboration with NASA on robotics and remote operations. NASA sees Woodside as a great test bed of robotics in harsh environments, as Woodside is doing similar tasks at its operations which NASA envisages doing on the Moon and Mars.5

The largest challenges facing the mining industry are the need to get to zero emissions, the need to get to zero harm and zero waste. There’s urgency in the call to solve all of these. It is now well-recognised that we need more collaboration not just within our sector, but across sectors. With the Moon to Mars program now underway, and the Trailblazer Lunar Rover program in place, this really is a tangible point in time where things are moving forward, a tangible point where people realise that this isn’t a dream, this is a reality.

* AROSE (Australian Remote Operations for Space and Earth) is an industry-led not-for-profit organisation dedicated to ensuring Australia is the trusted leader in Remote Operations science, technology and services on Earth and in Space.


Sources:
1. ‘Solving our largest on earth challenges through the benefit of technology transfer between space and mining,’ Michelle Keegan, Gavin Gillett, Clytie Dangar, World Mining Congress 2023.

References
1. ‘We’re a tech company’: Rio boss draws on lessons of history, Australian Financial Review, 2 August 2023. https://www.afr.com/chanticleer/we-re-a-tech-company-rio-boss-draws-on-lessons-of-history-20230801-p5dt2p
2. Integrating the approaches to space and mining project life cycles, Andrew Dempster, 5th International Future Mining Conference 2021. https://www.ausimm.com/publications/conference-proceedings/fifth-international-future-mining-conference-2021/integrating-the-approaches-to-space-and-mining-project-life-cycles/
3. No swarming yet in trillion-dollar market, Investmets, 4 August 2023. https://www.investmets.com/no-swarming-yet-in-trillion-dollar-market/
4. Global autonomous mining truck population tops thousand mark, to reach 1,800 by 2025, Mining.com, 18 May 2022. https://www.mining.com/global-autonomous-mining-truck-population-tops-thousand-mark-to-reach-1800-by-2025-report/
5. https://cciwa.com/business-toolbox/growth/why-woodsides-partnership-with-nasa-is-a-win-win/