Tag Archives: New Afton

New Gold to collaborate with MineSense in underground ore sorting move

MineSense is gearing up for a move underground with the help of New Gold and its New Afton gold-copper mine in British Columbia, Canada.

The Vancouver-based technology company has already established and proven its ShovelSense technology for the open-pit mining sector, with its X-ray Fluorescence (XRF) sensor-based system now operating on shovels, wheel loaders and excavators on a commercial basis across six operating mines. This includes large installations at Teck’s Highland Valley and Copper Mountain’s copper operations in BC, as well as one ShovelSense unit at the Antamina copper operation in Peru.

Designed for operation in extreme environments and retrofits on any existing mobile equipment, ShovelSense units come equipped with a human machine interface and proprietary algorithms that measure and report ore grade/characteristics. They can also connect directly to fleet management or other existing control software systems, enabling mine operators to reconcile geological block models with actual ore grade data.

Having finetuned the system for above-ground operations, the company is now embarking on its underground move, according to MineSense President and CEO, Jeff More.

A trial of the underground ShovelSense system at New Gold’s New Afton mine is first up to complete product development. The company will be installing a unit on a Cat R1600G LHD for this step. This will be followed closely by installation at a “large entity” in Chile – with More anticipating start up in the September or December quarter.

The development agreement with New Gold at the BC-based mine is looking to trial and finetune the system for underground operations, with More confident the ShovelSense system will stand up to the test.

“The core technology – all of the algorithms, software, hardware – is the same as ShovelSense for open-pit mining,” More said. “It is the ‘application package’ – looking at how we can attach the unit to the machine and protect it in an underground environment – that is what we have to test out. The design for this is already complete; it’s just a matter of trialling it.”

New Afton represents a good test for the system.

New Afton is Canada’s only operating block cave mine, with the New Afton deposit part of a larger copper-gold porphyry district in the region. The operation regularly mines 15,000-16,000 t/d of ore and waste, with the majority of this currently going to the mill.

The company has already pursued “ore segregation” projects to boost the grade of material being fed through to the processing side, but the move into the higher-grade C-Zone in 2023-2029 will place an even greater emphasis on ore/waste boundaries and milled tonnes at the operation.

At the same time, the ShovelSense deployment at New Afton will represent the first time MineSense has sent a unit into a mine that has so much payable gold, with most operations the company has worked on being primarily base metal-oriented.

In 2020, New Afton produced 64,000 oz of the yellow metal, along with 32,659 t of the red metal.

“This will be the first time we’re touching gold at this level; we have other mines that have payable gold but not at that level,” More explained.

In New Afton’s case, sampling and historical data has proven that the orebody’s copper and gold ratios tend to be consistent and unchanging over the long term. With this knowledge, New Afton has used technology in the past to determine the copper value and make ore/waste production decisions. ShovelSense allows New Afton to move the ore/waste production decision to the drawpoint, according to MineSense. This reduces mixing and blending during the crushing and conveying circuit which can homogenise the material to the point where it is not worth segregating.

Trialling new technology such as this is nothing new for New Afton.

The operation already uses automated loading through Sandvik’s AutoMine solution, is employing electrification with the use of Sandvik and MacLean Engineering battery-powered mobile equipment, and, in the process plant, has Gekko Systems’ highest volume InLine Pressure Jig IPJ3500 to improve gravity concentration.

More says the ShovelSense unit could be in the Cat LHD bucket at New Afton in August, with the machine then going through an above-ground trial ahead of the underground transition at the end of September.

“By early Q4, we should have completed the pilot,” he said.

New Gold heads towards New Afton’s B3 Zone

New Gold is set to soon start ore extraction activities at New Afton’s B3 Zone in British Columbia, Canada, after receiving its Mines Act Permit from the Ministry of Energy, Mines and Low Carbon Innovation.

The gold-copper mine has recently been focused on development of the B3 and C-Zones, which are likely to represent the major production sources over the next decade.

Current production is coming from the B1 and B2 Zones (Lift 1) where there are two panel caves (west and east) in operation. The B3 Cave is 160 m below and immediately to the west of Lift 1. Ore from B3 will be hauled by truck to the existing gyratory crusher, with production continuing until at least late 2024.

The C-Zone block cave zone is around 550 m below Lift 1. Development towards the C-zone is underway with production planned to commence with the first of 143 planned drawbells in the second half of 2023.

On the permit award, Renaud Adams, President & CEO of New Gold, said: “This is a significant milestone for the New Afton Mine. With the receipt of the B3 permit, ore extraction activities will begin this quarter and ramp-up over the year.

“C-Zone development continues to advance with C-Zone extraction expected to begin in the second half of 2023.”

The C-Zone permitting process was initiated during the March quarter of this year with the submission of the pre-application package to the Ministry of Energy, Mines and Low Carbon Innovation, Ministry of Environment and Climate Change Strategy and Indigenous groups.

Sandvik provides productivity boost at New Afton block cave mine

An automated loading solution has enabled Canada’s only block cave mine to mitigate mud rush hazards and improve productivity – and it paid for itself in less than two months, according to Sandvik.

Operated by New Gold, New Afton development began via decline ramp in 2007 and the mine reached commercial production in 2012. The mine, which employs a workforce of around 450, produced 77,329 oz of gold and 85.1 MIb (38,601 t) of copper in 2018.

Tonnage is tantamount to profitability at New Gold’s New Afton mine in south-central British Columbia. The mine has moved and milled as many as 22,000 t of ore in a single day and routinely extracts 18,500 t from Canada’s only block cave.

Like other prolific block caves, New Afton enjoys enviable efficiency at extremely low operating costs. But the mine has also had to conquer one of the biggest block cave challenges: mud rush.

Mitigating mud rush hazards was the major motivation for implementing automated loading at New Afton. As the block cave grew, more and more drawpoints became finely fragmented and wet. By 2016, one in five drawpoints were assessed as high risk, according to Sandvik.

To ensure operator safety, New Afton stopped manual mucking in those drawpoints and implemented line-of-sight teleremote loading.

“When 20% of your ore source needs to be remotely mucked, you run the risk that you can’t supply your mill with adequate tonnages,” said Mine Manager Peter Prochotsky, who joined New Afton in 2009 as a Mining Engineer and has seen the operation grow from a development project into Canada’s highest-tonnage underground mine. “The line-of-sight systems just weren’t keeping up with the growing production demand over the years and we needed a new way of doing things.”

New Afton conducted an engineering study in late 2016 to assess the potential value of implementing automated production loading to overcome the production constraint caused by line-of-sight and further improve safety.

The mine trialled an AutoMine-equipped Sandvik LH514 for one month in early 2017. Although the 14-t loader proved too long for some of the cave’s tighter turns, New Afton estimated impressive cycle times and buckets per shift for a smaller Sandvik LH410 based on the trial performance of the Sandvik LH514.

“To transition from a line-of-sight solution to an automated solution, we calculated a 54-day payback period,” Prochotsky says. “If we continued using line-of-site teleremotes, that production loss was essentially, over 54 days, the value of a brand new Sandvik LH410. And, we obviously made the choice pretty quickly that it was the right way to go.”

New Afton’s existing block cave extraction level layout wasn’t optimised for automation, Sandvik said. “Two dedicated colleagues worked hand in hand to champion the project, implementing the system and building operator buy-in,” it added.

Bob Garner, a technical expert with decades of block cave experience, led the operational side and trained operators on the AutoMine system. Electrical Instrumentation Technician, TJ Williams, meanwhile, handled installation of all electrical systems.

Garner says: “We needed to figure out the infrastructure, figure out the Wi-Fi, where we were going to put antennae points, how far apart they had to be, and then teach the loader its path and dial everything in to get it running efficiently.”

Sandvik provided initial engineering assistance, starting system implementation in the west cave that Williams was able to replicate himself in the east cave.

“The infrastructure is relatively simple,” he says. “Sandvik provided excellent documentation that we followed to a ‘T’ and I picked things up along the way working with their engineers. The overall process of installation was pretty straightforward.”

Within a week of commissioning in late 2017, the first of the mine’s two automated Sandvik LH410s was already proving significantly more productive than the teleremote solution, the mining OEM said.

Williams says most of the mine’s line-of-sight operators were comfortable running AutoMine within five days.

“The Sandvik automated loaders are much more technologically advanced than the competitor loaders featuring aftermarket line-of-sight, but the learning curve wasn’t steep,” he says. “Everybody picked it up really easy.”

New Afton has used its Sandvik LH410s for production mucking on the mine’s extraction level, one of the block cave’s five main underground levels. The average tram distance between drawpoint and ore pass is only 250 ft (76 m), limiting automation’s benefits.

Prochotsky says: “The longer the distance from drawpoint to ore pass, the faster the loader can tram and complete a cycle and the greater the value of automation.”

Despite the limitations created by the level’s short trams, the automated Sandvik LH410’s cycle time is almost twice as fast as the mine’s line-of-sight loaders, according to Sandvik. Manual mucking is still faster in the areas New Afton can use it, but the automated Sandvik LH410’s lower downtime and higher utilisation compensate for its modestly higher cycle time, the company said.

“At the end of the day, the tonnes moved by a manual loader and an automated loader are very similar,” Prochotsky says.

On top of recouping the investment cost of the automated loader in less than two months of operation, New Afton has experienced equipment health benefits on its bottom line, Sandvik said.

“AutoMine steers the loader with pinpoint precision and its collision avoidance features help eliminate damage while enabling high speeds that accelerate overall cycle time,” the equipment maker added.

“We used to do about C$10,000 ($7,565) of collision damage per loader per month, directly related to operating our line-of-sight loaders in a tight environment,” Prochotsky says. “This cost has dropped to zero thanks to AutoMine.”

The mine has also seen a 30% increase in tyre life on the automated Sandvik LH410s compared with the mine’s other 10 t loaders, Sandvik said.

After successfully managing the step change from line-of-sight to automated loading, and improving mucking efficiency while mitigating mud rush hazards, New Afton started thinking bigger.

For the first 18 months, operators oversaw the automated Sandvik LHDs from two underground control rooms. New Afton recently finalised a permit amendment process with British Columbia’s Ministry of Energy, Mines and Petroleum Resources to allow the mine’s operators to run AutoMine from a third chair on surface, eliminating travel time and enabling automated mucking through shift change.

“We think that’s really going to enable us to unlock the productivity benefits of automation,” Prochotsky says. “The gains we expect to see from this change should more than close the narrow gap between manual and automated mucking productivity.”

While New Afton focused almost solely on production during 2018, the mine has also recently restarted development to access a new zone that is expected to extend mine life to 2030. New Afton must maintain the same 18,500 t/d output despite three fewer operating hours due to twice-daily blasting.

Running AutoMine from surface enables New Afton to solve this challenge, too.

“We’ll keep our block cave productive by using an automated loader to muck our development rounds through blast clearing delays,” Prochotsky says. “If we can save 90 minutes in each shift, that’s a huge efficiency gain that also de-risks the project.”

Prochotsky contends New Afton couldn’t have implemented automated loading at a more ideal time.

“The opportunity to take your learnings and put them into action happens infrequently in block cave mines, as a new level is only developed every five to 10 years,” he says.

“We’re fortunate that we brought the AutoMine system in at really the perfect time for us, to learn how to use it for maximum benefit and position ourselves to take full advantage of it in future mine design.”

For New Afton, AutoMine has proven to be the complete automation solution that management assessed it to be, according to Sandvik.

“If another Mine Manager came to me and asked me who they should automate with, I think that Sandvik has the best system on the market, and it’s really because they have the total package,” Prochotsky says.

“They’ve got field service representatives available to come to your site to help train your people, they’ve got great safety documentation that allows you to make sure there won’t be any incidents or accidents underground, and they’ve got a product that works. It’s a pretty simple solution in my mind.”

The full version of this article appeared first as a Sandvik Solid Ground online news story, see following link: https://solidground.sandvik/the-ultimate-proving-ground/

New Gold after different funding strategy for C-Zone block cave at New Afton

New Gold has launched an internally-funded strategy for the development of another block cave at its New Afton gold-copper mine in British Columbia, Canada, as it looks to extend production through to 2030.

While further details of the strategy are expected later in January, a 2016 feasibility study on the C-Zone implied another 25 Mt of gold and copper ore reserves, equivalent to five years of mine life, could be added through the development of the new block cave.

Early last year, the company decided to defer development of the C-Zone in 2018, electing to evaluate opportunities “that have the potential to further optimise the C-Zone project”. Some of the opportunities identified, which were not featured in the feasibility study, included different tailings options (such as dry stack or thickened/amended tailings), as well as mining approaches based on operating experience in the B-Zone (including reassessing the amount of required underground development in the cave as well as optimising draw bell and pillar designs).

New Afton is a block cave mining operation able to produce 4 Mt/y of copper-gold ore for processing in a flotation plant. The deposit has been partitioned into three zones. The two nearest the surface cave readily and provide the initial mine production, while the deeper block is expected to require assistance in cave development.

An undercut and extraction level has been developed at each block, with ore hauled to ore passes and dropped to a tramming level for transport to the crusher. Ore from the deeper block is hauled by 50-t truck to the crusher level, from where it is conveyed to the mill via a 4.5-km long conveyor system.

Since the start of the current underground block cave operation in July 2012, exploration at New Afton has focused on extending the mineral resource below the current B-Zone block cave reserve. This work has resulted in the development of the C-Zone mineral resource, which was stated as 18.3 Mt at 0.8 g/t Au, 2.2 g/t Ag and 0.95% Cu as of December 31, 2017.

While investors will await further news of the internally-funded strategy for the C-Zone, the existing mine exceeded guidance in 2018. It produced 18,778 oz of gold in the December quarter for 77,329 oz in 2018, above expectations. Copper output also toppled expectations, with 20.8 MIb (9,435 t) and 85.1 MIb for the quarter and year, respectively.

And expectations are for these positive results to continue into 2019.

New Gold said in the December quarter results release that it had started an “ore segregation” strategy during the quarter, which has been further enhanced with the recent commissioning of an ore scanner. This is expected to increase overall mill grade, New Gold said.

Also, during the quarter, the initial phase of a two-phase mill upgrade to address supergene ore recovery was completed on time and on budget. This included the installation of pressure jigs and a magnetic separator with commissioning currently underway.

The second phase of the planned upgrade will be launched during the current quarter, with commissioning scheduled for the September quarter, the company said.