Tag Archives: Novamera

Novamera surgical mining tech to be evaluated for Jaclyn Main Zone project

Great Atlantic Resources’ wholly owned subsidiary, Golden Promise Mines Inc, has signed a Memorandum of Understanding (MoU) with Novamera Inc to evaluate the use of surgical mining and Novamera’s technologies as the extraction method for the Jaclyn Main Zone in central Newfoundland, Canada.

The Jaclyn Main Zone is part of the wider Golden Promise gold property, and currently contains an NI 43-101 compliant mineral resource estimate of 119,900 oz at 10.4 g/t Au in the inferred category.

The MoU sets out a series of milestones that include a conceptual surgical mining economic desktop evaluation, Guidance Tool calibration activities and a bulk sample. The parties expect to complete these activities within the next 12 months.

Novamera is a surgical mining technology company that has developed data driven hardware and software solutions that pinpoint, map, navigate and extract high value narrow vein deposits. Its precision drilling products integrate into conventional drilling equipment, enabling mining companies to quickly and sustainably mine various metal and mineral deposits that are otherwise uneconomic due to size, geometry and orientation, it says. The process has large scale environmental and social impacts to support ESG targets and improve social licence. Requiring a small footprint with no blasting, the solution produces 95% less waste, 44% less GHG emissions and 99% less water discharge.

Surgical mining is an option for bringing deposits into production that are the size and style of the Jaclyn Main Zone, according to the companies.

Given the low upfront capital costs and minimal development costs, surgical mining enables junior mining companies to get into production and generate cash flow, offering a second source of cash and relying less on the capital markets to fund strategic plans, Novamera states. In addition, the time to permits can be reduced because of the small footprint and scale of the operation.

Newfoundland is well known to Novamera, with some of its surgical mining technology tests taking place in Baie Verte at the Signal Gold-owned Romeo and Juliet deposit.

Christopher Anderson, CEO of Great Atlantic Resources, said: “We are thrilled to embark on this partnership with Novamera Inc. as we explore the potential of surgical mining and Novamera’s innovative technologies for the Jaclyn Main Zone project. This collaboration underscores our commitment to sustainable and efficient mining practices, which we believe will not only benefit our shareholders but also contribute positively to environmental preservation. We look forward to the journey ahead and the possibilities it holds for our company and the mining industry as a whole.”

Dustin Angelo, Novamera CEO, said: “We’re excited to be working with Great Atlantic and demonstrating the capabilities of surgical mining and our technologies. Mining companies like Great Atlantic are looking for solutions to bring deposits into production with a smaller environmental footprint than that of conventional mining methods. The willingness to look at a different business model will open more strategic options to generate value for their shareholders and realise positive cash flow sooner for a project.”

The Golden Promise property is located within the central Newfoundland gold belt, near the town of Badger. Multiple gold bearing quartz veins/quartz vein systems and zones of gold bearing quartz boulders are reported within the property. One such quartz vein system is the Jaclyn Main Zone.

Just last month, Novamera signed a MoU with E-Tech Resources Inc to evaluate the use of surgical mining and Novamera’s technologies as the extraction method for its Eureka project in Namibia.

E-Tech evaluating Novamera’s surgical mining technologies for Eureka project

E-Tech Resources Inc has signed a Memorandum of Understanding (MoU) with Novamera Inc to evaluate the use of surgical mining and Novamera’s technologies as the extraction method for its Eureka project in Namibia.

The MoU sets out a series of milestones that include a conceptual surgical mining economic desktop evaluation (commencing immediately), Guidance Tool calibration activities and a bulk sample. The parties are planning to initiate these activities over the next 12 months.

The solution could provide a more cost-effective and faster path to production, while also radically reducing environmental and social impact, E-Tech says. It aligns well with E-Tech’s values of being a sustainable and responsible company with the goal of supporting the green energy transition.

The Eureka project focuses on two rare earth elements (REEs), neodymium and praseodymium. The project’s mineralogy, processability and favourable logistics have the potential to make it one of the simplest and most accessible sources of REE supply to the global market, according to the company.

Todd Burlingame, E-Tech CEO, said: “E-Tech is advancing the development of the Eureka deposit by utilising innovative and leading-edge technology. The minerals of the future will require techniques and approaches that are in line with the ESG principles of their end use. We believe that Novamera’s technologies are revolutionary and E-Tech is thrilled to be at the forefront of exploring new mining methods.

“We are committed to finding sustainable and cost-efficient ways to mine the materials essential for building a low carbon economy, while also protecting and preserving the environment.”

Dustin Angelo, Novamera CEO, said: “We are excited to be working with E-Tech and demonstrating the capabilities of our surgical mining technologies. Mining companies like E-Tech are looking for solutions to bring deposits into production with a smaller environmental footprint than that of conventional mining methods. The willingness to look at a different business model will open more strategic options to generate value for their shareholders and realise positive cash flow sooner for a project.”

Novamera’s proprietary hardware and software seamlessly combine with conventional drilling equipment, allowing mining companies to surgically extract deposits while minimising dilution, according to the company. Real-time data, machine learning and production analytics drive the ‘surgical mining cycle’ to make extraction of complex, narrow-vein deposits not only viable but highly profitable.

A low capital expenditure solution requiring minimal mine development, surgical mining presents miners with a flexible, scalable mining method that can help get into ore quickly with small-scale deposits, it says.

Working together with conventional drilling equipment and operations, the solution generates circa-95% less waste and less than half the greenhouse gas emissions of selective mining methods, according to Novamera. In addition, a closed-loop system is employed to minimise water discharge and real-time backfilling reduces environmental impact and tailings storage needs.

A 2021 proof of concept was designed to test the entire surgical mining system and process, which is made up of three steps. This includes drilling a hole with a standard NQ-sized diamond core rig and sending Novamera’s proprietary guidance tool down through the core barrel on wireline to image the orebody in high resolution and with close spacing; bringing in a large-diameter drill, coupled with the company’s course correction device and positioning control system, to drill to depth following the trajectory provided by the guidance tool and transporting the cuttings using reverse circulation air-lift assist; and backfilling the holes thereafter.

The latest in-field demonstration, completed in late 2022, took place in Baie Verte, Newfoundland, at the same Signal Gold-owned site (the Romeo and Juliet deposit). The trial highlighted the technical capabilities of the guidance tool, the operational impact of real-time data in a production setting and the economic potential of surgical mining, according to Novamera.

Carried out under the auspices of the Canada Mining Innovation Council (CMIC), the demonstration highlighted to the sponsors – OZ Minerals, Vale and an unnamed global gold producer among them – that the guidance tool was integral to effective surgical mining.

In terms of the next steps for the technologies, Angelo told IM back in June that the company was keen to fabricate a “course correction device” able to compensate for the impacts of gravity on drilling such holes and the rock dynamics at play, equip the drill rig with a 2-m-diameter cutting head (as opposed to the 1-m-diameter head used in the proof of concept), prove out the guidance tool at a number of sites to build up a “geological database” and then get to a full production test at a chosen mine site.

Such a mine site test was confirmed around this time after the Government of Canada announced the 24 recipients of support selected through the Mining Innovation Commercialization Accelerator (MICA) Network’s second call for proposals. Novamera was named within this select pool, with the government granting it C$850,005 ($643,984) for a project to deploy its surgical mining technologies at the Hammerdown mine site, in Newfoundland, Canada, a site owned by Maritime Resources.

Novamera plots path forward for surgical mining technologies

Having completed a proof of concept of its entire surgical mining technologies portfolio in 2021, Novamera has furthered its credentials in the narrow-vein mining space by proving out its proprietary guidance tool in the same setting and testing out the ability to transport the concept to an underground mining environment.

Novamera’s proprietary hardware and software seamlessly combine with conventional drilling equipment, allowing mining companies to surgically extract deposits while minimising dilution, according to the company. Real-time data, machine learning and production analytics drive the ‘surgical mining cycle’ to make extraction of complex, narrow-vein deposits not only viable but highly profitable.

A low capital expenditure solution requiring minimal mine development, surgical mining presents miners with a flexible, scalable mining method that can help get into ore quickly with small-scale deposits, it says.

Working together with conventional drilling equipment and operations, the solution generates circa-95% less waste and less than half the greenhouse gas emissions of selective mining methods, according to Novamera. In addition, a closed-loop system is employed to minimise water discharge and real-time backfilling reduces environmental impact and tailings storage needs.

The 2021 proof of concept was designed to test the entire surgical mining system and process, which is made up of three steps. This includes drilling a hole with a standard NQ-sized diamond core rig and sending Novamera’s proprietary guidance tool down through the core barrel on wireline to image the orebody in high resolution and with close spacing; bringing in a large-diameter drill, coupled with the company’s course correction device and positioning control system, to drill to depth following the trajectory provided by the guidance tool and transporting the cuttings using reverse circulation air-lift assist; and backfilling the holes thereafter.

The latest in-field demonstration, completed in late 2022, took place in Baie Verte, Newfoundland, at the same Signal Gold-owned site (the Romeo and Juliet deposit). The trial highlighted the technical capabilities of the guidance tool, the operational impact of real-time data in a production setting and the economic potential of surgical mining, according to Novamera.

Carried out under the auspices of the Canada Mining Innovation Council (CMIC), the demonstration highlighted to the sponsors – OZ Minerals, Vale and an unnamed global gold producer among them – that the guidance tool was integral to effective surgical mining.

Dustin Angelo, CEO of Novamera, expanded on this.

“Throughout the technology development, we have had questions or statements about the ability to carry out the type of narrow-vein mining we are talking about by simply using a large diameter drill rig to extract the orebody following a conventional resource model,” he told IM. “The typical spacing a narrow-vein orebody is drilled on – traditional cross-cutting holes associated with exploration and infill work – is too wide to get the resolution needed for an exact picture of the orebody geometry.

“What we were able to demonstrate in the latest trial is that you need a tool like ours to collect, in real time, the amount of data required to accurately extract the orebody in question.”

Novamera demonstrated this in a March webinar, which highlighted the existing infill model at the Romeo and Julie deposit implied a large-diameter drill hole could be drilled on a 62° dip angle to accurately extract the orebody.

“In actuality when we imaged the hole and used our guidance tool, it suggested the orebody was on a 67° dip angle,” Angelo said. “We validated this assessment with data and then reconciled the results to show the impact.”

The original drill hole dip angle coordinates would have resulted in only 60% of the orebody being extracted, whereas Novamera’s guidance tool-aided drilling obtained 87% of the orebody.

“At the same time, the data coming back allowed us to locate where the other 13% would be, allowing the company to pick the remainder up with the next hole,” Angelo said.

Also part of the CMIC consortium, the company brought the guidance tool to an underground mine and was able to successfully operate it in that underground environment.

“We had never been underground, so we simply wanted to show we could take the tool underground, operate it and gather data in real time,” Angelo said.

Able to break the unit down into two pieces and mount the technology in stages on the drill rig, this was a pivotal demonstration for the company, opening up further possibilities with its solution.

“Novamera’s technologies can go underground; it is the large diameter drill we are piggybacking off that has issues due to its sheer size,” Angelo said. “We are working with OEMs and contractors to augment existing large diameter drilling equipment so it can be easily deployed in the confines of an underground deposit for the surgical mining application.”

In terms of the next steps for the technologies, Angelo was keen to fabricate a “course correction device” able to compensate for the impacts of gravity on drilling such holes and the rock dynamics at play, equip the drill rig with a 2-m-diameter cutting head (as opposed to the 1-m-diameter head used in the proof of concept), prove out the guidance tool at a number of sites to build up a “geological database” and then get to a full production test at a chosen mine site.

Such a mine site test was recently confirmed after the Government of Canada announced the 24 recipients of support selected through the Mining Innovation Commercialization Accelerator (MICA) Network’s second call for proposals. Novamera was named within this select pool, with the government granting it C$850,005 ($643,984) for a project to deploy its surgical mining technologies at the Hammerdown mine site, in Newfoundland, Canada, a site owned by Maritime Resources.

This project, which has a budget of circa-C$8 million – will see the company test out its technologies on a vein located outside the current proposed open-pit mine plan, demonstrating one use case where surgical mining can help mining companies add production to supplement the conventional method being employed.

Angelo said of such testing: “When we get to this point, it is no longer about simply a proof of concept, it is about demonstrating the capabilities and value of our technologies to enable surgical mining by reconciling the grade and tonnes associated with that mining exercise against an already established resource model.

“This is where we will really generate significant interest from the mining community, when we can show that we can help mining companies add production and extend mine life from currently uneconomic, steeply-dipping narrow vein deposits or zones in their mineral resource portfolio.”

Novamera concludes in-field demonstration of surgical mining, backed by Vale and OZ Minerals

Novamera says it has completed an in-field demonstration of its surgical mining technologies, sponsored by Vale, OZ Minerals and a leading global gold producer, with the results set to be presented shortly.

The in-field demonstration, completed in late 2022, took place in Baie Verte, Newfoundland, and highlighted the technical capabilities of the proprietary guidance tool, the operational impact of real-time data in a production setting and the economic potential of surgical mining, according to Novamera.

Surgical mining, powered by Novamera’s proprietary technology, could unlock trillions in currently uneconomic narrow-vein mineral deposits to meet the increasing demand for metals, while also supporting environmental, social and governance (ESG) targets, the company says.

The Canada Mining Innovation Council (CMIC) has been steering a industry consortium of mining companies to trial Novamera’s near borehole imaging tool at various project sites, including this latest trial.

Novamera’s proprietary hardware and software seamlessly combine with conventional drilling equipment, allowing mining companies to surgically extract deposits while minimising dilution, Novamera explains. Real-time data, machine learning and production analytics drive the ‘surgical mining cycle’ to make extraction of complex, narrow-vein deposits not only viable but highly profitable. A low capital expenditure solution requiring minimal mine development, miners have a flexible, scalable mining method that can help get into ore quickly with small-scale deposits.

Working together with conventional drilling equipment and operations, the solution generates circa-95% less waste and less than half the greenhouse gas emissions of selective mining methods, according to the company. In addition, a closed loop system was created to minimise water discharge and real-time backfilling reduces environmental impact and tailings storage needs.

CMIC CEO, Carl Weatherell, said: “Novamera’s surgical mining solution supports our vision of transforming mining into a zero-waste industry. We are thrilled to be part of this new era of mining innovation that increases safety, efficiency, social licence and environmental stewardship, while providing greater financial returns for the industry.”

Dustin Angelo, CEO of Novamera, said: “The industry needs innovative new solutions. Consortiums and the participation of industry leaders like Vale and OZ Minerals are critical to enabling new technologies to enter the market. Using technology, we can now unlock thousands of smaller-scale deposits and zones within existing mines that were previously uneconomic, allowing the industry to quickly add to production – meeting the rapidly growing global demand for metals.”

Novamera and OZ Minerals to take surgical mining concept forward with new MoU

Novamera Inc and OZ Minerals have entered into a Memorandum of Understanding (MoU) that, they say, provides a basis of common understanding to support the creation of a “collaborative innovation relationship” between the parties.

The two companies share a desire to unlock value in stranded mineral assets, transform the mining project lifecycle and enable the world’s raw material needs to be met responsibly, equitably and sustainably, they said. To that end, the partnership plans to engage in certain activities including, but not limited to, the following:

  • Participation by OZ Minerals in the Canada Mining Innovation Council (CMIC) Consortium of Mining Companies to trial Novamera’s near borehole imaging tool (NBIT) at various project sites later in 2022;
  • Assess the potential of deploying Novamera’s technology within OZ Minerals’ project portfolio;
  • Collaboratively evaluate potential project opportunities; and
  • Co-develop collateral to articulate the operational experience and value proposition associated with Novamera’s technology.

The agreement follows Novamera being named as one of seven companies in OZ Minerals’ ‘Scalable and Adaptable’ mining cohort to work together to explore flexible mine design, in September. The challenge was run as a partnership between OZ Minerals’ Think & Act Differently Incubator, Canada-based Inspire Resources and Unearthed.

Dustin Angelo, President and CEO of Novamera, said: “Since last September, we have been working with the Think & Act Differently team on the Scalable & Adaptable Mining Challenge. Over that period of time, we realised we share common goals and ideas on the direction of the mining industry and where to unlock value. The MoU will allow us to focus our efforts collectively and begin to leverage our individual core competencies to create a tremendous amount of value for each of our companies.”

Katie Hulmes, General Manager Transformation at OZ Minerals, added: “The Novamera technology can enable surgical mining. This approach has the potential to operate with less waste, water, energy and a smaller footprint. We look forward to working with Novamera as part of the CMIC Consortium and various internal projects.”

Novamera, through surgical mining, has set out to adapt a combination of drilling and imaging techniques already proven in the oil & gas industry for the narrow-vein mining sector, providing the technical and economical means to mine steeply dipping narrow-vein orebodies with the reduced footprint disturbance modern mining operations require.

Last year it carried out a proof of concept trial of the technology at the Signal Gold-owned Romeo and Juliet deposit in Newfoundland, Canada, which was designed to test the entire surgical mining system and process, which is made up of three steps. This includes drilling a pilot hole with a standard NQ-sized diamond core rig and sending imaging tools down through the core barrel on wireline; bringing in a large-diameter drill to drill to depth following the trajectory provided by the imaging tool and extracting the cuttings; and backfilling the holes thereafter.

Angelo told IM recently that the company had assembled a consortium of companies looking to co-fund a field trial of the company’s minimum viable product version of the NBIT (the version used at Romeo and Juliet, pictured), which is the key enabling technology within surgical mining, through CMIC.

Novamera carries out first field trial of SMD narrow-vein mining process

Novamera says it has completed a very successful field trial of Sustainable Mining by Drilling (SMD) at the Anaconda Mining-owned Romeo and Juliet narrow vein gold deposit in Newfoundland, Canada.

The company, back in July, closed a C$5 million ($4 million) Series A financing round, providing the necessary funds to carry out the first full field trial of SMD.

This proof of concept was designed to test the entire SMD system and process, which combines industry-proven, directional drilling equipment and high-resolution, downhole imaging with transformational innovations, smart systems and data analytics. The result, Novamera says, is a two-pass process that identifies vein shape and is highly flexible to changes in vein geometry; with a selective, surgically-accurate mining process that’s clean, efficient and offers the potential for low capital expenditure with high return.

Novamera finds funds for first full field trial of Sustainable Mining by Drilling tech

Novamera has closed its C$5 million ($4 million) Series A financing round, providing the necessary funds to carry out the first full field trial of its Sustainable Mining by Drilling (SMD) solution for narrow-vein mining.

BDC Capital’s Industrial Innovation Venture Fund was the lead investor and Chrysalix Venture Capital also participated with a follow-on investment through the Chrysalix RoboValley Fund.

The field trial, which is taking place at Anaconda Mining’s project site in Newfoundland, Canada, has commenced and will be ongoing until the end of November. The company says it is carrying out a proof of concept, testing the entire SMD system and process.

Dustin Angelo, President and CEO of Novamera, said: “The financing, along with the non-repayable funding from Sustainable Development Technology Canada, will help us develop the first generation SMD system and position the company to be the global leader in precision mining. The mining industry faces many challenges that require more sustainable and environmentally-friendly solutions and SMD will be an economically viable option to extract narrow vein deposits with minimal waste and disturbance.”

Novamera says it is developing “keyhole surgery” for mining, an innovative clean technology and process that will be able to mine the numerous small-scale narrow vein mineral deposits found worldwide more safely, economically and sustainably using pilot hole diamond drilling and downhole directional sensors with machine-learning algorithms to to identify vein/host rock interfaces. Then it will use industry proven drilling technology – a variant of conventional Pile Top RCD drills used successfully by the construction industry followed by a form of reverse circulation drilling – to extract the ore.

Hitachi CM looks for access to resource industry start-ups with Chrysalix fund investment

Chrysalix Venture Capital, a global venture capital fund with a history of commercialising innovation for resource intensive industries, has announced Hitachi Construction Machinery Co Ltd has invested in the Chrysalix RoboValley Fund.

Hitachi Construction Machinery, a leading manufacturer of construction and mining equipment, joins a cluster of mining and metals players such as South32, Severstal and Mitsubishi Corp in the fund, and “will leverage Chrysalix’s extensive network in the mining field to strengthen open innovation by connecting with start-ups that possess the latest technologies for mining in areas such as robotic systems, IoT, AI and data analytics”, the company said.

“Chrysalix has made step-change innovations in the metals and mining, manufacturing and machinery industries, through digital solutions and advanced robotics technologies, a major theme of our fund, and we are delighted to welcome Hitachi Construction Machinery to the Chrysalix RoboValley Fund,” Alicia Lenis, Vice President at Chrysalix Venture Capital, said.

Just some of the companies included in Chrysalix’s portfolio include Novamera, which is developing its Sustainable Mining by Drilling technology for narrow-vein mines; and MineSense Technologies, a Vancouver-based start-up developing real-time, sensor-based ore data and sorting solutions for large-scale mines.

Naoyoshi Yamada, Chief Strategy Officer at Hitachi Construction Machinery, said: “We identified Chrysalix as having a valuable network of start-ups in its global innovation ecosystem, and a unique window on innovation opportunities in the mining industry.

“With the trends toward digitalisation, the autonomous operation and electrification of mining machinery, as well as the growing need for solutions to streamline and optimise not only mining machinery but also overall mining operations, many start-ups offer novel technologies and services, and our investment in the Chrysalix RoboValley Fund will enable Hitachi Construction Machinery to tap into these new breakthroughs.”

The Chrysalix RoboValley Fund, Chrysalix says, seeks to achieve significant returns for its investors by enabling resource intensive industries, including energy, mining, construction, infrastructure and mobility, to tap into innovation from high growth start-ups.