Tag Archives: OKTOP

Metso takes aim at refractory gold, base metal leaching ops with new OKTOP BIOX tech

Metso is extending its hydrometallurgy offering with the launch of OKTOP® BIOX® Reactor, a solution, it says, is ideal for the pre-treatment of refractory gold concentrate and base metal leaching.

OKTOP BIOX Reactor is part of the Metso Plus offering (the rebranded Planet Positive offering) and enables enhancing oxygen mass transfer to improve energy efficiency and process performance during the leaching process.

“The OKTOP BIOX Reactor provides increased operational efficiency with the most energy-efficient agitator design available for the BIOX process,” Waldemar Olivier, Senior Process Engineer, Gold, at Metso, said. “The reactor features a dual-pumping agitator that maximises surface aeration, increasing oxygen mass transfer and enhances foam entrainment back into the slurry using a novel surface aeration ring. Thanks to its innovative design, it delivers more than 20% energy savings on agitation power, lowering operational costs.”

Metso says it provides comprehensive support from design to service for OKTOP BIOX Reactor deliveries. This includes, for example, full process design, mechanical guarantees and test work capabilities. To support steady operational efficiency, Metso’s in-house engineering team offers accurate monitoring and optimisation services.

With over 1,200 installations globally, the modular OKTOP Reactor is trusted by industries worldwide and has built an excellent reputation for being safe and reliable and ensuring consistent performance with excellent product quality, according to the OEM. Metso BIOX technology boasts 14 installations that have resulted in combined gold production of more than 36 Moz to date. The OKTOP BIOX Reactor features a novel agitator specifically designed for this application.

Metso brings scalability to magnetic separation process with MSPUs

Metso has introduced modular Magnetic Separation Plant Units designed to streamline the flowsheet selection process, boost recoveries and simplify operation.

Alex Lagerstedt, Vice President, Plant Solutions at Metso, said: “As the industry leader in mining process technology and modularity, we are excited to launch the Magnetic Separation Plant Units. Besides easy installation and maintenance, the scalable units have been designed to provide unrivaled selectivity, resulting in high recovery of fine and ultrafine particles.”

Compared with a traditional delivery, the modular plant units result in the earliest time-to-volume, according to Metso. Thanks to maximised pre-fabrication in a controlled workshop environment and minimised site work, installation is safer, faster and of better quality.

The Magnetic Separation Plant Units feature a flexible scope to meet the needs of the end customer or EPCM. Delivery includes proven technology for the entire magnetic separation circuit with in-house testing for equipment sizing and flowsheet design, and it can also include automation, installation and commissioning advisory, training, maintenance and service.

Metso’s advanced magnetic separation equipment portfolio consists of SLon® Vertically Pulsating High Gradient Magnetic Separators, Metso High Gradient Magnetic Separators, and/or dry and wet Low Intensity Magnetic Separators. Additionally, the plant units can be equipped with OKTOP® feed tanks, slurry pumps, hoses and valves, and coupled with process control systems and various ancillary products and sampling systems.

Peter Jansson, Product Manager, Magnetic & Physical Separation at Metso, said: “Metso’s High Gradient Magnetic Separator portfolio features a wide range of processing options for many particle sizes and applications, ranging from iron ore concentrates, rare earth ores, battery and industrial minerals to tailings recovery. Combining these magnetic separators into plant units results in flexible and efficient flowsheets.”

For the Magnetic Separation Plant Units, Metso says it can also provide an integrated service offering through its global network. The scope ranges from maintenance, modernisations & retrofits, process optimisation to spares and wears, training and Life Cycle Services.

The Magnetic Separation Plant Units are Metso’s sixth complete plant unit launch for concentrator plants. The previous launches include Stirred Mill and Horizontal Mill Plant Units, Flotation, Thickening and Filtration Plant Units.

Blackstone Minerals engages Metso for nickel, cobalt refinery plans in Vietnam

Blackstone Minerals Ltd has announced the inclusion of Metso as the technology supplier for the definitive feasibility study of the company’s pCAM (precursor cathode active material) processing plant in its Ta Khoa refinery in Vietnam.

Metso is already involved in the design of the pCAM plant and will also conduct independent pCAM test work to validate the nickel and cobalt sulphates generated during the pilot program for suitability in pCAM generation, the OEM says.

Metso is currently designing the pCAM plant with Wood, providing experience and engineering technical support.

Scott Williamson, Managing Director at Blackstone Minerals Ltd, said: “Blackstone intends to leverage off Metso’s engineering services and know-how into the pCAM facility design, thus de-risking the project and confirming Blackstone’s intent to be a real player in the pCAM space. Securing another world leader to the Ta Khoa project is yet another jigsaw piece in the battery value chain puzzle. Blackstone continues to look forward to project success as it marches towards developing the greenest and most resilient nickel business in the world.”

Blackstone highlighted the OEM’s high value technology in the context of the pCAM facility design, such as the modular OKTOP® reactors (with industrial references for scaling-up pCAM precipitation processes), Larox® filtration technologies and Courier® HX continuous product quality analyser equipment to enable precision control and real-time optimisation.

“Metso has shown that precursors precipitated with OKTOP reactor technology are proven to meet the required chemical and physical properties for high-performance cathode active material,” it said.

Rudi Rautenbach, Director, Minerals Sales, Asia-Pacific, Metso, said: “We are confident that our experience in nickel processing and battery metals technologies will contribute positively to the project. Many of our offerings that are planned to be used in this project are selected from our range of Planet Positive products, which are demonstrably more energy or water efficient than the industry benchmark or Metso’s previous generation products in the market, to help our customers cut their CO2 emissions and/or to achieve other sustainability priorities. We believe these are all in line with Blackstone’s objectives towards developing the greenest and most resilient nickel business in the world.”

Metso says it provides sustainable technology and equipment for the entire lithium, nickel, and cobalt production chain from the mine to battery materials and black mass recycling with project scopes ranging from equipment packages to plant deliveries. Metso has its own pCAM testing facilities.

A February 2022 prefeasibility study on the 90%-owned Ta Khoa project outlined first concentrate production in in 2025, ramping up to nameplate design of 8 Mt/y in 2027. It expected a steady-state average annual nickel output (recovered in concentrate) of circa-18,000 t/y and steady-state average annual concentrate production of circa-225,000 t/y. The project also came with a steady-state refining capacity of 400,000 t/y, with first production of NCM811 precursor material commencing in early 2025.

HALMEK LITHIUM to work with Metso Outotec on lithium hydroxide plant

HALMEK LITHIUM has selected Metso Outotec’s patented lithium hydroxide process for production of battery-grade lithium hydroxide at its greenfield plant in the Tula region in Russia.

The order value, which is not disclosed, has been booked in the company’s Metals June quarter orders received.

Metso Outotec’s scope of delivery consists of the engineering and key equipment supply for the lithium hydroxide process, the basis of which will be the Metso Outotec OKTOP® autoclave plant. The environmentally sound production process is one of Metso Outotec’s more than 100 Planet Positive products, the company said.

Pavel Galchenko, VP, Halmek Lithium, said: “One of the most important tasks in the project was the selection of technology. Instead of the more traditional sulphuric acid processing to produce lithium hydroxide, we decided to choose the Metso Outotec lithium hydroxide process as it is the most promising and environmentally-sound process at the moment.

“The pilot tests conducted at the Metso Outotec Research Center in Pori, Finland, provided excellent results.”

Mikko Rantaharju, Vice President, Hydrometallurgy business line at Metso Outotec, said: “Metso Outotec has developed lithium hard rock-related technologies for some 20 years now. It started with the battery-grade lithium carbonate process and, when the market changed to favour lithium hydroxide, the process flowsheet was converted to directly produce battery-grade lithium hydroxide monohydrate from spodumene.

“Both of the processes are patented and will be significant assets in our battery chemicals business, meeting the need to produce high-end lithium-ion battery chemistries for the growing market.”

HALMEK LITHIUM’s new hydrometallurgical plant, which will complement its existing lithium hydroxide plant, is currently under construction. As raw material, the new plant will use spodumene concentrate; it will feature a capacity of 20,000 t/y of battery-grade lithium hydroxide monohydrate, which is used in the production of batteries for electric vehicles. The first production line is planned to start up in 2023, and the second production line with a capacity of 20,000 t/y is expected to start production in 2026.

Metso Outotec books zinc plant order as it agrees sale of aluminium business

Metso Outotec has signed a contract to deliver a complete package of key process equipment for a greenfield zinc plant in the Chelyabinsk region in Russia.

The contract value of approximately €100 million ($122 million) has been booked in Metso Outotec’s Decemeber quarter order intake, a quarter of which will be booked in Minerals segment and the rest in Metals segment.

The order for the Verkhny Ufaley plant includes an equipment package for zinc concentrate processing, iron precipitation, solution purification and electrowinning (EW) technologies for safe and sustainable zinc processing based on OKTOP® reactor and plant products.

The order also contains a circuit heat recovery system, zinc EW and ingot casting equipment, as well as high-efficiency cooling towers for zinc EW and gypsum removal with drastically reduced emissions compared with conventionally-designed cooling towers, the company said. Clarifying solutions for consistent solid-liquid separation, high-performance Larox® FP and RB filters with low energy consumption, as well as fully integrated digital process automation for more reliable and flexible operation are also part of the order.

“Metso Outotec has been supplying minerals processing and metals refining technologies to our customers in Russia for a long time,” Jari Ålgars, President, Metals business area at Metso Outotec, said. “The new zinc plant will utilise Metso Outotec’s proprietary technology, which is both sustainable and highly cost effective.”

Stephan Kirsch, President of the Minerals business area at Metso Outotec, added: “Metso Outotec provides leading-edge technology for extensive zinc processing plants. This includes proprietary process equipment and know-how from raw material to final zinc product and various by-products.”

The technology to be delivered is the most cost-efficient technology available for zinc raw material processing, enabling efficient zinc and by-product recovery from a wide range of primary zinc raw material, according to Metso Outotec.

In a separate press release, Metso Outotec announced it had agreed to sell its Aluminium business to REEL International, headquartered in France. The business was put up for sale a year ago and has since been reported under the company’s discontinued operations.

The business to be divested comprises of green anode plants, anode rodshops, and casthouses used in aluminium smelters as well as related equipment and services. Approximately 120 Metso Outotec employees will join REEL upon closing, which is expected to take place during the March quarter of 2021, Metso Outotec said.

The parties have agreed not to disclose the value of the transaction.

Outotec mineral process equipment destined for Okvau gold project

Outotec says it has been awarded a contract from Renaissance Minerals, a subsidiary of Emerald Resources, for the delivery of process equipment to the greenfield Okvau gold project, in Cambodia.

The order value, booked into Outotec’s 2020 March quarter order intake, is around €13 million ($14.2 million).

Outotec’s scope includes the delivery of an Outotec HIGmill® high intensity grinding mill, a semi-autogenous (SAG) mill, TankCell® flotation cells, an OKTOP® Conditioner, thickeners and spare parts.

The Okvau gold project is in the Mondulkiri province of eastern Cambodia. The 2 Mt/y operation will be the first large-scale mining project in the country, according to Outotec, with project commissioning expected in the June quarter of 2021.

Last year, ASX-listed mining contractor, MACA, entered into a memorandum of understanding with a subsidiary of Emerald Resources to supply equipment and contract mining services at the project.

Paul Sohlberg, Head of Outotec’s Minerals Processing business, said: “We are pleased to be part of Cambodia’s first significant gold processing project with Emerald’s highly credentialed gold project development team.

“Outotec’s leading technologies such as energy efficient ultrafine grinding, proven flotation technology for low grade sulphide ore and superior thickening technology, enable our customer to do profitable business sustainably. This order will strengthen Outotec’s position as a supplier of advanced minerals processing technologies in Southeast Asia.”