Tag Archives: paste backfill

Record Rokion battery-electric vehicle order set for Torex Gold’s Media Luna

Torex Gold’s Media Luna project in Mexico has been behind a surge of battery-electric vehicle contract activity of late, with the latest recipient being Saskatoon-based Rokion.

The gold mining company has ordered a 28-strong fleet of BEVs from Rokion, set to start being delivered at the back end of the year.

These vehicles will be crucial in providing zero emission and effective personnel transport and production support functions at the project, which is set to extend the life of mine of its El Limón Guajes (ELG) Complex through at least 2033.

Media Luna is located 7 km south of the existing ELG Complex comprised of the El Limón, Guajes and El Limón Sur open pits, El Limón Guajes underground mine, plus the processing plant and related infrastructure. It is an underground deposit primarily containing gold, copper and silver mineralisation, separated from the ELG Complex by the Balsas River.

The underground mine is designed for an average production capacity of 7,500 t/d, predominately using a mining method of longhole stoping with paste backfill, supplemented by mechanised cut and fill stoping where appropriate. It will be a fully mechanised operation with the primary access to the mine via the Guajes Tunnel, which, itself, will have a length of approximately 6.5 km, creating an underground connection between the ELG Complex and the Media Luna mine. The ELG site will continue to serve as the base of mine operations, with all production levels accessible from the internal mine ramp.

Torex expects to bring Media Luna into commercial production in early 2025, ramping up to 7,500 t/d by 2027 and creating one of Mexico’s largest underground mines. It contains reserves of approximately 2.1 Moz gold, 18.9 Moz silver and 444 Mlb copper.

As of March 31, 2023, physical progress on the project was approximately 24%, according to Torex, with detailed engineering, procurement activities, underground development and surface construction advancing. The project continued to track to overall schedule and budget, the company noted.

Equipment deliveries will be key in advancing the project in line with the schedule and, earlier this year, both Sandvik Mining and Rock Solutions and MacLean announced sizeable equipment orders – both battery- and diesel-powered – related to the mine’s development and production phases.

Now, IM can reveal that Torex has also sealed an agreement with Rokion.

Rokion are to supply 27 of its battery-powered utility trucks to the operation along with one R700 forklift – the latter representing the company’s first order for a battery-powered forklift.

According to Rokion, these trucks can navigate mine sites with 20% grade at a full gross vehicle weight and full speed while traveling more than 70 km per charge. This is more than enough to get through a full shift without charging. And, while availability is a key selling point, Rokion says its battery-powered vehicles have been designed for simple and easy maintenance. The modularity of the components are “ideal for remote mining locations where the priority is to have dedicated service personnel with expertise in production mining equipment”.

When it comes to vehicle specifics, Rokion outlined that Torex would receive 10 R200 battery-powered trucks – configured to carry up to five passengers – two R200 trucks set up as two-passenger surveyor utility vehicles, two R200 two-person “6×6 Surveyor” utility vehicles and four R200 two-person “6×6 Electrician” utility vehicles. This would be complemented by seven R400 vehicles fitted out to carry 12 passengers – which have four-wheel steering to greatly improve manouevrability, according to Rokion – and two R400s equipped for three passengers able to carry out mechanic duties.

The Rokion order from Torex for Media Luna includes 16 of the company’s R200 battery-electric vehicles

Gertjan Bekkers, Vice-President, Mines Technical Services with Torex, said: “Our light-vehicle fleet will be used to drive fairly significant distances between our work sites on every shift, so the flexibility and range of these vehicles were key considerations for Torex during the procurement phase. The tunnel connecting Media Luna with ELG is like our horizontal shaft, connecting to the internal ramp of the Media Luna mine. Of course, we’ve also carefully considered equipment reliability and we were particularly impressed by the enhancements that Rokion has made to their portfolio since entering the underground hard-rock mining market.”

Kipp Sakundiak, CEO of Rokion, said the two companies have struck up a very important partnership over the last year or so when the engagement began.

“After getting to know the team at Torex, we are excited about the opportunities,” he told IM. “It is a good thing when you have a vendor-supplier relationship whereby both companies share similar values.”

Deliveries of the vehicles will start in October, with the full fleet set to be in place in 2025, according to Sakundiak.

NexGen marries ESG and financials in Arrow uranium project feasibility study

NexGen Energy CEO, Leigh Curyer, says the company’s Rook I uranium project has earnt its place as one of the “leading global resource projects with an elite ESG profile” after the publication of feasibility study results on the project’s Arrow deposit in the Athabasca Basin of Saskatchewan, Canada.

The study was completed jointly by consultants including Stantec, Wood and Roscoe Postle Associates (now part of SLR Consulting), with other technical inputs completed by sub-consultants.

Financial highlights from this study included an initial capital bill of C$1.3 billion ($1.03 billion) repaid with a post-tax net present value (8% discount) of C$3.47 billion based on a $50/Ib uranium price. From years 1-5 average annual production was due to come in at 28.8Mlb of uranium oxide, with average production over the life of mine of 10.7 years of 21.7 MIb/y.
The company laid out plans for a 1,300 t/d mill processing an average feed grade of 2.37% U3O8.

Listed within the “top five feasibility study outcomes” was enhanced environmental performance, with NexGen saying an optimised facilities layout had reduced the project footprint by around 20% and lowered on-site personnel transportation and ore haulage.

Optimised shaft sizing, water usage through advanced water recycling, and plant engineering reflected elite environmental standards, it added.

“With respect to the proposed shaft, mine workings and underground tailings management facility (UGTMF) locations, geotechnical and hydrogeological testing validated highly competent rock with no significant alteration, no major structures, and low hydraulic conductivity,” the company said.

The mine plan at Arrow was based on conventional long-hole stoping using the 239.6 MIb of declared reserves, the company said.

“Geotechnical studies during the feasibility study re-emphasised the conventional long-hole stoping mining method, including the use of longitudinal and transverse stopes, 30 m level spacing, and the nominal stope strike length of 12 m to 24 m,” it said. “This represents an excellent stope stability range for underground mining in the highly competent conditions.”

Given the competency and conditions of the underground environment, all waste streams from the process plant are planned to be stored underground in the UGTMF, while process water streams will be treated on surface in the optimised effluent treatment plant, NexGen said.

The underground workings will be accessed by two shafts, with the production shaft supporting personnel movements, materials, ore, waste and fresh air. The production shaft was increased to 8 m in diameter (from 6.5 m in diameter in the prefeasibility study (PFS)) to optimise radiation and ventilation management, ensuring the mine is elite from a safety perspective, the company said.

“Additionally, the production shaft will have divided compartments, ensuring that fresh air and personnel entering the mine, remain isolated from ore being skipped to surface,” it added.

The exhaust shaft was ultimately decreased to 5.5 m in diameter (from 6.5 m in diameter in the PFS) and will be used for exhaust air and emergency secondary egress, NexGen said.

Like some other projects in the region, shaft freezing will be required to a point to secure the underground project, NexGen confirmed.

In terms of processing, NexGen said extensive test work and engineering had determined that proven technology in a conventional uranium processing flowsheet is most effective to produce uranium oxide from the Arrow deposit.

The main components of the processing plant are ore sorting; grinding; leaching; liquid-solid separation via counter current decantation and clarification; solvent extraction; gypsum precipitation and washing; yellowcake precipitation and washing; yellowcake drying; calcining and packaging; and tailings preparation and paste tailings plant.

Metallurgical testing resulted in supporting and refining process design parameters, with the process recovery of 97.6% confirming the predictable nature of the processing flow sheet, it said.

“The feasibility study also confirmed that all processed waste streams can be stored in the UGTMF and no surface tailings facility is required,” NexGen said. “The UGTMF is a reflection of NexGen’s industry-leading environmental design approach, contributing to the significant reduction of the project’s surface footprint, and representing an opportunity to implement best practice of progressive closure of tailings facilities during the operational phase of the mine.”

A feasibility study drill program validated the geotechnical conditions and favourable conditions for the UGTMF, with the study also optimising the geotechnical design, size and sequencing of the UGTMF included in the mine plan.

The study test work demonstrated paste fill strength met or exceeded all requirements set in the feasibility study design for a potential paste-backfill to be used for underground stope stability.

In terms of the timeline to production, NexGen said it planned to submit its Environmental Impact Statement in the second half of this year, along with relevant licences.

Capstone prepares Cozamin for introduction of paste backfill, dry-stack tailings

An updated Technical Report on Capstone Mining’s Cozamin copper-silver mine in Zacatecas, Mexico, has shown the potential for a mine life extension to 2031, and a plan for dry-stack tailings and underground paste backfill. At the same time, the company says it is studying the use of “innovative mining techniques and enhanced pillar recovery” to make the most of existing reserves and resources.

The updated life of mine plan released outlined average annual copper production of 51.2 MIb (23,224 t) of copper and 1.6 Moz of silver production over 10 years at average C1 costs, including the 50% silver stream, of $1.02/Ib of payable copper. From 2021 to 2027, average annual production is slated to be 58.8 MIb of copper and 1.7 Moz of silver.

The company said a planned ramp-up to 3,780 t/d, or 1.38 Mt/y, by the end of March quarter is on track, with a new section of ramp to open the one-way traffic circuit to debottleneck the mine (pictured) completed in early December 2020, ahead of schedule.

Reserves increased by 39% and now stand at 14.1 Mt, relative to April 30, 2020. Contained copper and silver increased by 37% and 49%, respectively, with around half of this increase due to recovery of high-grade pillars using paste backfill, Capstone said.

The miner said “tailings management transformation” activities were progressing on schedule at site, including feasibility-level design and studies in support of permitting a filtered (dry stack) tailings storage facility.

“This conversion from a slurry tailings impoundment aligns with industry leading socio-environmental best practice for tailings management,” the company said.

Meanwhile, a prefeasibility study (PFS) for an underground paste backfill system was completed in December.

The study indicates a paste backfill system will allow ore extraction containing over 100 MIb of copper and 3.1 Moz of silver between 2023 and 2031, which would have otherwise been left as unmined pillars. The PFS design has a capital cost estimate ranging from $41-$45 million and an increase in operating costs of around $7.50/t of ore mined. Capstone says its management has approved the paste backfill project and work has commenced on procurement of long lead items.

The proposed paste backfill system includes a tailings filter plant, a paste mixing plant, twin boreholes to deliver paste underground and an underground distribution system. The system is expected to be commissioned starting in the December quarter of 2022, with ramp-up completed in the March quarter of 2023.

PFS design of these facilities was completed by Paterson & Cooke in December 2020 and a feasibility study is underway with completion expected in April 2021. Mine planning was completed by Cozamin, with design support provided by a geotechnical consultant, and paste backfill operational guidance provided by AMC Consultants.

Within the latest release, Capstone also flagged the initiation of its “Impact23 Growth” project, which has identified areas of exploration excellence, innovative mining techniques and enhanced pillar recovery at Cozamin.

“By 2023, the goal is to further extend mine life, increase environmental and safety standards, and improve operational efficiencies at Cozamin, utilising mineral resources already discovered in addition to testing new targets,” the company explained.

Included among the options are the innovative mining techniques for resource to reserve conversion flagged at the start of this story.

Capstone says a study will be initiated this year to assess alternative mining techniques with the objective of lowering costs and dilution to convert resources to reserves from the indicated resource base. The current mining methods are longitudinal longhole open stoping and AVOCA, with possible alternatives to be studied including cut-and-fill, drift-and-fill and longhole open stoping with ore sorting technology.

Brad Mercer, Capstone’s SVP and Chief Operating Officer, said: “The life of mine plan announced today maximises extraction of the orebody’s high-grade core by deferring stoping in this area until the paste backfill plant is in operation in 2023. Projected production averages nearly 60 MIb of copper per year for seven years at first quartile costs.

“The Impact23 Growth project that we are kickstarting today is aiming to demonstrate in a 2023 technical report how Cozamin can sustain these levels of performance well into the 2030s.”

Darren Pylot, Capstone’s President and CEO, added: “After 14 years in operation, the best years of Cozamin are ahead. The mine is world class with sustainable low costs and leading safety and environmental performance entrenched throughout the organisation. The growth initiatives are supported by an entrepreneurial fabric at Capstone, as we embrace innovation and technology to create high impact value for our shareholders.”

Latest Kamoa-Kakula copper studies reaffirm project’s world-class status

The latest economic studies on Ivanhoe Mines and Zijin Mining Group’s majority-owned Kamoa-Kakula project in the Democratic Republic of Congo have indicated the asset could become the world’s second largest copper mining complex.

First production at Kamoa-Kakula is less than a year away, but the project partners have continued with a series of economic studies that emphasise the world-class nature of the orebodies within their control.

The headline maker is the results of a preliminary economic assessment that has evaluated an integrated, multi-staged development to achieve a 19 Mt/y production rate at the mine, with peak annual copper production of more than 800,000 t.

At the same time, a prefeasibility study (PFS) has been carried out to look at mining 1.6 Mt/y from the Kansoko mine, in addition to 6 Mt/y already planned to be mined from Kakula, to fill a 7.6 Mt/y processing plant at Kakula.

A definitive feasibility study (DFS) has also evaluated the stage-one, 6 Mt/y plan at Kakula, which is currently being constructed and is less than a year away from producing first copper, according to Ivanhoe Co-Chair, Robert Friedland.

While the operation looks to have the scale of a world-class asset, it will also have top ranking ‘green’ credentials, according to Friedland.

“The Kakula mine has been designed to produce the world’s most environmentally-responsible copper, which is crucial for today’s new generation of environmentally- and socially-focused investors,” he said.

“Zijin shares our commitment to build the new mines at Kamoa-Kakula to industry-leading standards in terms of resource efficiency, water and energy usage, and minimising emissions. We are blessed with ultra-high copper grades in thick, shallow and flat-lying orebodies – allowing for large-scale, highly-productive, mechanised underground mining operations; and access to abundant clean, sustainable hydro electricity to power our mines – providing us with a distinct advantage in our goal to become the world’s ‘greenest’ copper miner and be among the world’s lowest greenhouse gas emitters per unit of copper produced.”

The project recently retained Hatch of Mississauga, Canada, to independently audit the greenhouse gas intensity metrics for the copper that will be produced at Kamoa-Kakula.

The Kamoa-Kakula Integrated Development Plan (IDP) 2020, as the companies refer to it, builds on the results of the previous studies announced in February 2019.

DFS to 6 Mt/y

The new DFS incorporates the advancement of development and construction activities to date, and has once again confirmed the outstanding economics of the first phase Kakula Mine, Ivanhoe said.

It evaluates the development of a stage one, 6 Mtpa underground mine and surface processing complex at the Kakula deposit with a capacity of 7.6 Mt/y, built in two modules of 3.8 Mt/y, with the first already under advanced construction (see photo). It comes with an internal rate of return of 77% and project payback period of 2.3 years.

The first module of 3.8 Mt/y commences production in the September quarter of 2021, and the second in the March quarter of 2023. The life-of-mine production scenario provides for 110 Mt to be mined at an average grade of 5.22% Cu, producing 8.5 Mt of high-grade copper concentrate.

The Kakula 2020 DFS mine access is via twin declines on the north side and a single decline on the south side of the deposit. One of the north declines will serve as the primary mine access, while the other decline is for the conveyor haulage system, which was recently commissioned.

The primary ore handling system will include a perimeter conveyor system connected to truck load-out points along the north side of the deposit. The perimeter conveyor system will terminate at the main conveyor decline.

The mining method for the Kakula deposit is primarily drift-and-fill using paste backfill (around 99%); with the exception of a room-and-pillar area close to the north declines, which will be mined in the early years of production. The paste backfill system will use a paste plant located on surface connected to a distribution system that includes a surface pipe network connected to bore holes located at each connection drive on the north side of the orebody, the company says.

The Kakula concentrator design incorporates a run-of-mine stockpile, followed by primary cone crushers operating in closed circuit with vibrating screens to produce 100% passing 50 mm material that is stockpiled.

At the end of August, the project’s pre-production surface ore stockpiles totalled an estimated 671,000 t grading 3.36% Cu, including 116,000 t of high-grade ore grading 6.08% Cu.

The crushed ore is fed to the high pressure grinding rolls operating in closed circuit with wet screening, at a product size of 80% (P80) passing 4.5 mm, which is gravity fed to the milling circuit.

The milling circuit incorporates two stages of ball milling in series in closed circuit with cyclone clusters for further size reduction and classification to a target grind size of 80% passing 53 micrometres (µm).

The milled slurry is pumped to the rougher and scavenger flotation circuit where the high-grade, or fast-floating rougher concentrate, and medium-grade, or slow-floating scavenger concentrate, are separated for further upgrading. The rougher concentrate is upgraded in the low entrainment high-grade cleaner stage to produce a high-grade concentrate.

The medium-grade or scavenger concentrate together with the tailings from the high-grade cleaner stage and the recycled scavenger recleaner tailings are combined and further upgraded in the scavenger cleaner circuit. The concentrate produced from the scavenger cleaner circuit, representing roughly 12% of the mill feed, is re-ground to a P80 of 10 µm prior to final cleaning in the low entrainment scavenger recleaner stage.

The scavenger recleaner concentrate is then combined with the high-grade cleaner concentrate to form final concentrate. The final concentrate is then thickened and pumped to the concentrate filter. Final filtered concentrate is then bagged for shipment to market.

The scavenger tailings and scavenger cleaner tailings are combined and thickened prior to being pumped to the backfill plant and/or to the tailings storage facility. Backfill will use approximately half of the tailings, with the remaining amount pumped to the tailings storage facility.

Based on extensive test work, the concentrator is expected to achieve an overall recovery of 85%, producing a very high-grade concentrate grading 57% copper. Kakula also benefits from having very low deleterious elements, including arsenic levels of 0.02%.

7.6 Mt/y PFS

The PFS evaluating mining 1.6 Mt/y from the Kansoko mine envisages an average annual production rate of 331,000 t of copper at a total cash cost of $1.23/lb copper for the first 10 years of operations, and annual copper production of up to 427,000 t by year four. This comes with an internal rate of return of 69% and project payback period of 2.5 years, according to Ivanhoe.

Development would see Kakula-Kansoko benefit from an ultra-high, average feed grade of 6.2% Cu over the first five years of operations, and 4.5% Cu on average over a 37-year mine life.

There are currently two mining crews at Kansoko, in addition to the 10 mining crews (three owner crews and seven contractor crews) currently at Kakula, with the ability to increase this number to fast-track the development of Kansoko, Ivanhoe said.

19 Mt/y option

The Kamoa-Kakula 2020 PEA presents initial production from Kakula at a rate of 6 Mt/y, followed by subsequent, separate underground mining operations at the nearby Kansoko, Kakula West and Kamoa North mines, along with the construction of a 1 Mt/y of concentrate direct-to-blister smelter. The smelter section of the study saw China Nerin Engineering act as the main engineering consultant with Outotec providing design and costing for propriety equipment.

The Kamoa North Area comprises five separate mines that will be developed as resources are mined out elsewhere to maintain the production rate at up to 19 Mt/y, with an overall life in excess of 40 years, Ivanhoe says.

For this integrated 19 Mt/y option, the PEA envisages $700 million in remaining initial capital costs, with future expansion at Kansoko, Kakula West and Kamoa North funded by cash flows from the Kakula mine, resulting in an internal rate of return of 56.2% and a payback period of 3.6 years.

This shows the potential for average annual production of 501,000 t of copper at a total cash cost of $1.07/lb copper during the first 10 years of operations and production of 805,000 t/y of copper by year eight, Ivanhoe said.

“At this future production rate, Kamoa-Kakula would rank as the world’s second largest copper mine,” the company said.

Outotec provides modular paste backfill solution

Outotec says its new Modular Paste Backfill Plant (MPB 80) is a high-quality, cost-effective plant solution for underground non-ferrous mining applications with low-range backfill throughput requirements.

The MPB 80 acts as an “ideal alternative” to installing a concrete batching-style plant that has been reconfigured for producing paste backfill, according to the company. The wet tailings solution uses 80 m2 of vacuum disc filtration and is geared towards mines with an ore production capacity of between 700,000 t/y and 1 Mt/y.

As Outotec says, a high-quality backfill system is vital to ensure mine integrity and the safety of personnel, as well as to minimise the volume of tailings that need to be directed to tailings dams on the surface.

“With a dedicated paste backfill plant, mines can produce high-quality paste at a lower cost than is possible with modified concrete plants and larger, previous-generation paste backfill plants.”

Because the Outotec Modular Paste Backfill Plant features a combined paste mixer and hopper in place of separate units, it enables significant reductions in both plant size and maintenance requirements, the company says. “In addition to reducing the plant footprint, this unique process design significantly reduces the need for cleaning, meaning the plant can run for multiple shifts without having to shut down,” it said.

The plant components are pre-assembled off-site and delivered in larger, pre-engineered modules, enabling a significantly shorter interval between order placement and installation and start-up.

Other key benefits include a reduction in capital expenditure without compromising paste backfill quality; a reduction in the need to direct tailings to surface dams for deposition; lower operating expenditure over the mine life with highly accurate binder addition; and a full range of operations and maintenance services available to ensure smooth, efficient operation.

Weir to expand tailings dewatering offering with new ‘innovative’ solution

As the Global Tailings Review prepares to issue a new industry standard in 2020, Weir Minerals has chosen now to examine the subject of dewatering tailings.

The company, already offering solutions to help dewater tailings, says it is developing an “innovative tailings dewatering solution” to allow operators to pump slurry containing an extremely high percentage of solids. It says it plans to launch the new technology in 2020.

Mike Swintak, Regional Senior Product Manager for Weir Minerals, said dewatering tailings can be a difficult process, yet, when undertaken successfully, “it can deliver significant benefits to mine operators”.

The foremost benefit of dewatering tailings is the reduction of water that needs to be transported from a process plant to a tailings storage facility (TSF).

Reduced water content means tailings slurry volume is decreased, allowing for smaller pipelines and pumping equipment to be used. This can also minimise power requirements.

Thickened tailings and paste can improve the stability of TSFs and diminish their footprint. In some instances where existing TSF capacities are limited by regulatory or other environmental considerations, thickened tailings can help to extend the life of the mine, Weir says.

“Proper containment of tailings reduces the risk to people and the environment, and when decommissioning a mine, thickened tailings facilities are easier to rehabilitate,” the company added.

To a growing extent, thickened tailings are also used for underground mine backfill. This can increase productivity and reduce mine cycle times as well as surface TSF disposal volumes. Underground mining conditions can also be improved due to decreased water and slimes handling.

Important considerations and challenges

“When tailings are not properly managed, the results can be lethal. It is vital that mine operators have a clear understanding of key risks and considerations related to this process, in particular, tailings dewatering,” Swintak said.

Every mine site is different and subject to varying environmental, regulatory, capital and operating cost constraints.

Cost is a key consideration for many operators and can adversely affect the viability of a mine site, according to Weir. Therefore, it is necessary to implement a tailings management strategy that provides both reliability and value for money.

“Environmental limitations are also a major factor when establishing a TSF,” Weir says. “In parts of the world where there is challenging topography, such as mountainous regions or other environmentally sensitive landscapes, TSFs may need to be built further away from the process plant. This can result in slurry being transported across longer distances or higher elevations. Dewatering of tailings is a viable option in these scenarios as less slurry needs to be moved, in turn reducing operational costs.”

Some operations produce highly diluted tailings that require extensive dewatering to reach the desired level of thickness. Other slurries may contain extremely fine particle solids that are also difficult to manage. Large mine sites, or those with complex orebodies, can produce many types of tailings waste slurries, which may require varying methods of treatment.

“Across this multitude of situations, the operator must determine all associated costs and assess the level of dewatering required to confirm the most suitable solution for their site,” Weir says.

“While some mines are in a position to increase the size of their TSFs, many are not, and must implement a viable dewatering process, which can involve significant capital expenditure.”

If dewatering tailings to the highest possible degree, operators also need to develop a suitable strategy for transporting the waste material. Tailings that are too thick to be pumped may need to be transported by either a conveyor system or truck.

Finally, when a mine site reaches the end of its life and moves into the decommissioning phase, TSFs must be dealt with in accordance with regulatory and legislative requirements. As many mine sites need to be rehabilitated and restored to a natural state, a key benefit of producing thickened tailings is its ability to be covered with overburden and re-planted with suitable vegetation.

Weir Minerals offering

“Weir Minerals realises dewatering tailings can be a daunting process for many operators,” it says. “In order to provide the highest level of support and service, the company has invested heavily in its tailings management capabilities. More than just a supplier, every mine site is assessed on a case by case basis to provide a complete tailings dewatering system customised to the customer’s applications and constraints.”

Swintak added: “From developing flow sheets and process requirements to supplying equipment including dewatering systems incorporating our Isodry thickeners and filters, Multiflo floating and mobile pump systems for use on tailings ponds, or GEHO positive displacement pumps capable of transporting high density slurries up to 200 km, we provide customers with peace of mind through our tailings solutions.”

A key point of difference, according to Weir, is the intensive pilot plant testing Weir Minerals can perform at the Weir Technical Centre in Australia. This facility is designed to test tailings samples from around the world to help ascertain the best way to process them in line with the customer’s requirements. Testing is conducted using thickeners/clarifiers, hydrocyclones, filters and centrifuges, as well as a comprehensive pipe loop facility for determining high density slurry pipeline design.

Weir Minerals can also conduct testing at customer mine sites to assess the viability of various tailings management strategies.

As the mining industry gains a better understanding of tailings, it is vital new and improved methods of containment and storage are developed.

“Weir Minerals believes that the dewatering of tailings has a fundamental role to play in this, and continues to push the boundaries of possibility,” it said.

Weir Minerals’s Essack on end-to-end tailings and pipeline solutions

As mining companies’ tailings facilities continue to be scrutinised by regulators and non-governmental organisations, Weir Minerals Africa Process Manager, Hoosen Essack, has talked up the need for tailored tailings solutions for the future.

Combined with the stringent accountability that mine operators have to local communities, tailings management is now a significant consideration, with processing requirements and technology changing rapidly. Traditionally involved in the pumping of tailings, at Weir Minerals we have extended our expertise into this area to encompass the entire tailings process. From dewatering to transport, disposal, and the conversion of tailings into a resource, we can provide customers with an end-to-end tailings and pipeline solution.

This holistic, solutions-based approach to tailings management strengthens our relationship with customers and adds value to their operation beyond pumping. In light of water conservation, operational sustainability and safe deposition of tailings, it’s important that we invest in this area to help solve crucial issues within the mining sector.

Our extension into the tailings processing field means we are now involved in the production of the material, as opposed to simply transporting it. Through extensive consultation, site visits and audits, our team ascertains the customer’s objectives and recommends a complete, optimal solution to meet their needs, which can include dewatering equipment, piping, pumps, valves and instrumentation.

This seamless approach is a departure from the traditional industry practice of sourcing components from multiple suppliers, which are challenging to integrate. Our extensive research and development capabilities means we can provide a wide spectrum of tailings management options not limited by a particular type of technology or equipment.

This involves assessing the variations in capital and operating expenditure along with the overall and long-term benefits of each, providing a truly customised solution. Prior to implementation, rigorous testing and trials are conducted to assess viability and performance ahead of final selection, detailed design and engineering, delivery and commissioning. Another key benefit to customers is the ability to transform tailings into products, which can safely be used by the mine, such as road construction material. This involves dewatering of tailings, in which we have extensive expertise.

Dewatering involves removing liquid from waste slurry so that the remaining solids can be deposited in a tailings storage facility or returned to the site from which it was mined as backfill. There are several dewatering methods to render waste slurry to differing degrees of dryness, ready for transport from the plant to the deposition site. Any liquid recovered through dewatering is returned for reuse in the process.

We can provide a variety of processing systems inclusive of equipment and infrastructure to achieve the final tailings product that is required by the customer, from thickening to create a paste, or applying a filter to produce a product which can be dry deposited. As tailings management evolves, the industry is moving towards the latter for increased safety and stability, and in the process maximising water recovery.

As mine operators become more vigilant in managing their tailings, new processing technology is continually developed, including at the Weir Technical Centre in Australia. Innovative, uniquely tailored solutions incorporating high performance equipment and a global service footprint means we are leading the industry in making tailings more sustainable. Ideally, this will lead to a future where tailings related hazards are a thing of the past.

Outotec to deliver ‘unique’ paste backfill plant to OZ Minerals’ Prominent Hill mine

Outotec says it has been awarded a contract to design and deliver a mine paste backfill system to OZ Minerals’ Prominent Hill copper-gold mine, in South Australia.

The contract price is €15 million ($16.5 million) and it has been booked into Outotec’s 2019 June quarter order intake, the mineral processing company said.

Outotec’s supply includes the design and delivery of a complete paste backfill system, as well as detailed design of the underground distribution network and fill management systems, it said.

The new paste backfill plant will be based on a unique process design, which allows flexibility to use continuously produced fresh tailings or store filter cake to meet the future backfill needs of the underground mining operation, Outotec said. The new facility is expected to have a capacity of 215 m³/h.

“A reliable paste backfill system is critical to the whole mine and its operations. We are pleased to support our customer to improve their tailings management in a sustainable way,” Kimmo Kontola, Head of Outotec Minerals Processing Business, said.

Prominent Hill is a copper-gold mining operation made up of the Malu open-pit mine – which concluded operations last year – the Ankata and Malu underground deposits and a conventional crushing, grinding and flotation processing plant.

Outotec has previously delivered an EPC backfill system, plus build own operate backfill plant for ongoing operation at Prominent Hill.

 

Outotec looks for consistent and efficient dewatering with new paste thickener

Outotec has introduced the 2nd Generation Paste Thickener to, it says, maximise underflow density regardless of challenging mineralogy and tailings feed-rate variation.

The thickener enables consistent and efficient dewatering performance – even with changing process conditions, according to the company.

“Through consistent performance and high underflow density, the 2nd Generation Outotec Paste Thickener maximises beaching angle in the tailings storage facility to provide safer operations and maximised lifespan,” Outotec said.

The new paste thickener provides ease of operation and reliability for applications requiring a high degree of dewatering, such as minerals tailings, mine backfill, and pre-leach and counter current decantation circuits, according to the company. “The technology is customised to address each operation’s unique drivers, which can include environmental concerns, water recovery, regulatory requirements, tailings management, or limitations on available land space,” the company said.

Outotec has a history of developing paste thickeners, as well as the design and delivery of large-scale paste thickening projects. “This has given us a deep understanding of the key aspects of high-density thickeners, including effective flocculation, dewatering, raking, prevention of rotating mud beds, process control, and the discharge of thickened solids,” it said.

“One such case was the deployment of Outotec paste thickener technology – including a full-scale paste tailings plant and Outotec ACT Thickener Optimizer system – at Yara’s Siilinjärvi apatite mine in Finland (pictured),” Simon Courtenay, Product Manager for the Outotec 2nd Generation Paste Thickener, said. “The plant generates around 10 Mt of tailings a year and, thanks to the Outotec ACT Thickener Optimizer, the paste thickeners can consistently run with a high and stable underflow solids content of 66-68%, regardless of challenging mineralogy and tailings feed-rate variation. This results in average beach slope angles of 3.5° (6.1%) in the tailings disposal area, helping to extend its lifespan. The system has also enabled a 10-20% reduction in flocculant costs.”

The new 2nd Generation Paste Thickener builds on this proven performance with a range of innovative new features, according to the company. For example, vertical load monitoring with the Smart Rake Lift system means the Outotec Paste Thickener is one of the only systems in the world that can detect early formation of rotating beds, enabling counteractions to be taken early, Outotec said.

The system also monitors and actively adjusts the individual hydraulic cylinders to maintain alignment of the rake mechanism. Incorporating vertical load sensing with plant process data in the Outotec ACT Thickener Optimizer control system means the solids inventory within the tank can be maintained to ensure a consistent underflow density, stable process, and improved overall thickener performance, according to the company.

In addition to mechanical improvements, process control has been further developed to stabilise and optimise the performance of the paste thickener, Outotec said.

The company said: “Outotec’s ACT Thickener Optimizer utilises a multivariable controller to manage process changes and the associated delays in the response time of the thickener that can be challenging for traditional control systems. It can also be configured to manage the effects of variable feed types to ensure optimum performance despite changing inputs to the process. Short installation and configuration time of the system is coupled with on-going services to ensure a practical yet flexible long term control solution.

“Our application-specific design of the thickener begins with the use of methods such as discrete element modelling to understand solid particle movement within the thickener, computational fluid dynamics for feed system design and finite element analysis for structural steel design. Our paste thickening solutions are also designed with ease of maintenance in mind, with a skid-mounted hydraulic power unit for centralised connection of hydraulic hosing from the rake lift cylinders and drive unit.”

Other key design features include:

  • Low profile rakes with tie-cable load sharing that minimise rake drive torque requirements;
  • Rake blades supported by thixoposts to move the rake arm away from the highest density thickened solids;
  • High sidewall and steep tank floor slope for more efficient dewatering of flocculated solids and compaction of the bed, as well as better transport of the solids inward toward the tank discharge point;
  • High installed drive torque to move the rake blades through beds of thickened solids with high yield stress and viscosity, and;
  • Feed systems with break tanks when required for different thickener feed situations, including our patented Vane Feedwell, and break tanks inside the thickener perimeter to save on site layout space.

“Beyond technology and equipment, Outotec provides complete solutions for thickening needs,” the company said. “Proven design features and process guarantees, combined with lifecycle service support, help ensure operational reliability. We can also support customers with ongoing operation and maintenance services after plant commissioning.”

Kirkland Lake Gold signs up GR Engineering for Fosterville paste backfill plant

GR Engineering has won a contract to build a paste backfill plant for Kirkland Lake Gold’s Fosterville mine in Victoria, Australia.

The EPC contract will see the company carry out all process engineering design, supply, construction and commissioning of a plant capable of producing 65 m³/h of paste to fill the stopes in the gold mine. The scope of the work also includes the design of the underground reticulation piping.

GR Engineering is booking A$23.9 million ($17.3 million) for the work, which will start immediately. Completion of the facility is expected in 2019.

This is the second EPC paste backfill contract the ASX-listed company has won in the past few weeks. Earlier this month, Saracen Gold Mines awarded GR Engineering a contract to build and commission a plant able to produce 110-120 m³/h of paste to fill stopes at its Karari underground mine, part of its Carosue Dam operations, in Western Australia.

Kirkland Lake’s Fosterville operation is a high-grade underground mine expected to produce 275,000-300,000 oz of gold this year. It extracts gold via open stoping with cemented rockfill used where applicable and practical.