Tag Archives: preconcentration

South Crofty pre-con, ore sorting test work implies improved project economics, Cornish Metals says

Cornish Metals Inc has received results back from TOMRA Sorting GmbH that indicate X-ray Transmission (XRT) sensor-based sorting could be a viable option for its South Crofty tin project in the UK.

The feasibility study on South Crofty, a iconic former producing copper and tin mine with first documented production history dating back to 1592, is advancing on schedule with a substantial amount of the study completed, Cornish Metals said. The mine was the last tin operation in Cornwall to close in 1998.

Metallurgical test work and heavy liquid separation (HLS) pre-concentration test work provided “excellent results”, the company said.

Conducted on samples from the 2023 metallurgical drill program across five mineralised zones (No. 4 Lode, No. 8 Lode, Roskear B/D Lodes, North Pool Zone and Dolcoath South), it represented the majority of the potential production areas in the first six years of the proposed mine life, according to Cornish Metals.

The XRT work came back with a 55% mass rejection and less than 3% metal loss (-50 mm – +15 mm size fraction), while the HLS testing saw a 50% mass rejection and lesss than 5% metal loss (-15 mm – +0.85 mm size fraction).

The XRT ore sorter test work of bulk composite samples was completed by TOMRA Sorting GmbH, with the HLS test work of bulk composite samples completed by Wardell Armstrong International.

Cornish Metals said: “The test work results confirm the upgrading potential of South Crofty mineralisation and enables continuation of the process design optimisation work to reduce the size of the mineral processing plant and materially lower capital costs, operating costs and environmental footprint.”

Richard Williams, CEO and Director of Cornish Metals, said the company expected the mineralisation at South Crofty to respond well to XRT ore sorting, but these results exceeded “our most optimistic expectations”.

He added: “We expect this result will have a positive effect on the project economics, allowing for lower power consumption and a smaller process plant and therefore lower capital and operating costs.”

In addition to ore sorting test work, the following feasibility study components have also been completed:

  • Headframe structural modelling and refurbishment;
  • Schedule and costing for the refurbishment and recommissioning of New Cooks Kitchen and New Roskear shafts;
  • Televiewer investigations and geotechnical rock testing to confirm known historical structural and rock mass property data;
  • Conceptual numerical modelling of the proposed underground mining methods and stope designs. Back analysis supports historical operating data. Ground conditions and excavation stability are expected to be very good;
  • Phase 1 of the metallurgical testwork program (mineralogy, physical competency, characterisation and gravity response test work). The gravity response results are very good and confirm previous operational results;
  • Concept engineering on paste backfill options and sighter test work; and
  • Ground investigations for the new mineral processing plant.

The following dtudy components are currently underway:

  • Mineral processing plant design, layout and capital cost study, incorporating the results of the metallurgical test work program reported today and potential future throughput expansions;
  • Underground mine design and optimisation using the latest South Crofty resource estimate published in September 2023;
  • A mine ventilation study, underground infrastructure design and hoisting analysis;
  • A feasibility study-level engineering design for the paste backfill plant;
  • Hydrogeology, environmental, social, marketing and closure studies; and
  • AMC Mining Consultants has been appointed to independently review and compile the feasibility study with initial gap analysis and site visits completed.

Metso Outotec aims for higher capacities as ore sorting offering develops

The entry of Metso Outotec into the bulk ore sorting space arguably heralds the beginning of a new stage of market adoption – one that is focused on significant throughputs across multiple commodities.

In May, the mining OEM announced a collaboration agreement with Malvern Panalytical, a company that has been using Pulsed Fast Thermal Neutron Activation (PFTNA) technology onboard its cross-belt analysers to analyse and help divert ore and waste streams with improved accuracy.

Up until that announcement, Metso Outotec had mooted the benefits of bulk ore sorting in several industry articles. On the smaller scale, it had also renewed its ongoing agreement with particle ore sorting major player, TOMRA.

The company said its agreement with Malvern Panalytical, which has previously worked on bulk sorting projects with Anglo American among others, brought together its expertise in crushing and bulk material handling solutions with Malvern Panalytical’s ore analysis nous to offer an industry-leading portfolio of solutions for bulk ore sorting.

Rashmi Kasat, Vice President, Digital technologies at Metso Outotec, said in the press release that the pact with Malvern Panalytical would allow the company to meet the industry’s increasing sustainability and resource efficiency needs in an enhanced way in the early comminution stage.

“Sensor-based bulk ore sorting and data-driven analysis upgrades low grade or waste stockpiles, making them economical and far less energy-intensive to treat,” she said.

There are obvious positive benefits up- and down-stream of sensor-based sorting too, with the ability to carry out a low-cost mining method (upstream), as well as reduced capital investments in downstream equipment already shown with early-adopter projects.

That is before considering the relative energy and water reduction requirements that come with applying the technology.

Kasat later told IM that the company’s existing portfolio of material handling modules, crushing stations or mobile crushing equipment, as well as bulk material handling solutions, already “complement” the concept of bulk sorting.

“The addition of the bulk sensor is easily achieved,” she clarified. “The diversion mechanism will be included as well to be able to offer the whole plant out of one hand.”

With crushing stations – at least in the in-pit crushing and conveying (IPCC) space – that can go up to 15,000 t/h (see the company’s Foresight™ semi-mobile primary gyratory station), the prospect of Metso Outotec making a concerted effort to get into the bulk ore sorting space bodes well for the rising throughputs of projects.

NextOre recently claimed it had commissioned the world’s largest bulk ore sorting system at First Quantum Minerals’ Kansanshi copper mine in Zambia. This installation, which uses the company’s magnetic resonance technology, comes in at a 2,800 t/h-rated capacity.

Scantech, meanwhile, recently confirmed it has a GEOSCAN GOLD installation using prompt gamma neutron activation analysis technology for bulk sensing/sorting up and running that uses a diversion system at conveyed flow rates of more than 6,000 t/h.

Kasat, without naming a range, confirmed Metso Outotec was targeting “higher capacities” in line with the sensors available on the market. She also clarified that the agreement with Malvern Panalytical was “non-exclusive”.

“We will choose all our sensor/analyser partners strategically,” she explained. “Malvern Panalytical has a leading position and history in this field with proven technology for ore sensing. We will leverage our and their Tier 1 position in the industry for our bulk ore sorting offering.”

Malvern Panalytical uses Pulsed Fast Thermal Neutron Activation technology onboard its cross-belt analysers to analyse and help divert ore and waste streams with improved accuracy

As the type of sensor to be employed varies based on several factors including mineralogy, plant capacity, application of bulk ore sorting, etc, Metso Outotec will identify the right partners for the right need, she explained.

The major constraints for these sensors are often measurement times and sensor penetration, according to Kasat.

“There are very few sensors out there that can do sensing of a 500-mm-deep bed of rock on a conveyor belt, moving at 5-6 m/s,” she said. “But our current and future prospective partners are working on developing the technologies to reduce measurement times without compromising the accuracy of measurement.”

The mining OEM is looking to, in most cases, provide ‘plug and play’ flowsheets for bulk ore sorting and then carry out the required customisation per sensor.

This plan reinforces Kasat’s assertion that there is no ‘one-size-fits-all’ concept in bulk ore sorting applications.

For new projects, the process could see the company start with metallurgical testing, progress to mobile/fixed pilot plants in the “backyard” to test the accuracy of the sensors for the given application, and then find the right solution for the customer’s use case.

Renato Verdejo, Business Development Lead for Bulk Ore Sorting at Metso Outotec, added: “For existing plants, we will install the sensor over the belt conveyor and analyse the results after selecting the right sensor for this sorting application.”

Metso Outotec intends to focus on major commodities like copper, iron, nickel and gold, among others, with applications such as waste/ore sorting, low grade re-crushing and beneficiation process optimisation.

Within this wide remit – and in line with its non-exclusive agreements with Malvern Panalytical and TOMRA – the company is also considering the combination of both bulk and particle sorting in flowsheet designs.

Metso Outotec, in 2021, renewed its ongoing agreement with particle ore sorting major player, TOMRA

“The combination of the superior throughput of a bulk application with the selectivity of particle sorting in a rougher-scavenger setup is something that can bring sorting to high volume mines in the future,” Kasat said.

“Plant concepts and flowsheets have already been conceptualised and we expect the first deliveries to be in pilot stations to test the sensors on site,” she added, saying that the tonnage requirements for bulk ore sorting sensor validation meant a bulk sensor would have to be piloted in the field to get statistically meaningful data about the properties of the deposit.

Metso Outotec’s crushing system offering will form the “base” for these solutions, with ore sorting optionality available to all customers, she said.

This sensor-based optionality also overlaps with another in-demand part of Metso Outotec’s business: IPCC.

The company’s dedicated team in Germany are responsible for this area, developing projects backed by comprehensive studies.

They – like most of the industry – are aware of the potential application for sensor-based ore sorting in IPCC projects.

Markus Dammers, Senior Engineer of Mine Planning for Metso Outotec and one of the team members in Germany, said there were applications for both bulk and particle sorting in IPCC applications, with the former likely integrated after primary crushing and the latter after secondary/tertiary crushing.

“Bulk ore sorting in an IPCC application should be integrated after primary crushing in order to recover marginal material determined as waste in the block model, or reject waste from the ore stream,” he said.

Bulk ore sorting in an IPCC application should be integrated after primary crushing in order to recover marginal material determined as waste in the block model, or reject waste from the ore stream, according to Markus Dammers

If integrated after secondary or tertiary crushing, it becomes less effective, with the ore’s heterogeneity decreasing every time the ore is rehandled, transferred, crushed, blended, etc.

“In this manner one can take advantage of the natural variability in the deposit, rather than blending it out, with bulk ore sorting,” he said.

After secondary and tertiary crushing, particle sorting may be applied as a “standalone or subsequent ‘cleaner’ process step”, he added.

With Metso Outotec open to the inclusion of ore sorting in fully-mobile, semi-mobile and stationary crushing stations within an IPCC context, the company has many potential customers – existing and new – out there.

And that is just in IPCC applications.

The company also has hundreds of crushing stations on fixed plant installations that could represent potential sorting opportunities.

Metso Outotec, on top of this massive install base, has a few advantages over traditional ore sorting vendors in that it understands the plant that goes around the analysis and diversion process associated with ore sorting; knows how important uptime is to its customers; and, through sophisticated modelling, realises what impact changes in the flowsheet will have up- and down-stream of such equipment.

“The key point here is to have all the equipment to handle and process the ore to feed the sorter and, later, having the technology to divert the material and retain the availability of the plant without changes,” Kasat said.

Energised by its Planet Positive aims of responding to the sustainability requirements of its customers in the fields of energy or water efficiency, emissions, circularity and safety, the company is now ready to flex its processing plant muscles to increase the industry’s adoption of bulk and particle sorting technology.

COREM, Steinert ore sorting tests present opportunities for Cartier at Chimo gold project

Cartier Resources says ore sorting tests carried out by COREM and Steinert US on mineralised samples from the Chimo Mine property, in Quebec, Canada, have indicated gold grades could increase substantially with the use of the pre-concentration technology.

Gold from Chimo is present in two types of mineralised facies: i) quartz veins with coarse visible gold grains having an affinity for the gravity concentration of gold at the mill and ii) zones of silica-rich mafic rocks associated with non-refractory arsenopyrite having an affinity for the flotation of a concentrate of arsenopyrite for gold recovery at the mill.

To perform the sorting tests, rocks representative of the two mineralised facies, made up of the following six mineralogical facies, were first selected for static recognition of each of the facies by the sensors of the sorter:

  • Gold-bearing quartz veins;
  • Gold-bearing silica;
  • High grade gold-bearing arsenopyrite;
  • Medium grade gold-bearing arsenopyrite;
  • Low grade gold-bearing arsenopyrite; and
  • Mafic waste rock.

The detection sensors of the industrial sorter at COREM in Quebec, Canada, were the RGB camera using the optical properties of reflection, brightness and transparency to locate quartz and silica and the X-ray Transmission sensor using the volumetric property of atomic density to locate arsenopyrite. The two sensors adequately recognised the six mineralogical facies associated with the mineralisation, with dynamic calibration tests of the sorter with the moving conveyor making it possible to sort, one at a time, 2 kg samples of each of the facies, Cartier said.

The results of this first test at COREM showed the first three sorts (on a total of eight sorts) concentrated 99.1% of the gold contained in 44.4% by mass of material mass for a grade of 56.3 g/t Au, representing a percentage increase of 223% in gold content over sorter feed. The reject, representing 0.9% by mass of material, contained only 0.4 g/t Au.

The sorter was then ready to perform sorting tests on the 105.7 kg production sample, representative of the mineralised facies at an average grade of 2.16 g/t Au. This content was obtained by including 20% by mass of material with zero grade of gold, simulating dilution in the stopes. COREM’s sorting plan separated 53.9% by mass of the material in the form of a preconcentrate at an average grade of 3.68 g/t Au, representing an increase of 170% in the gold grade compared with the sorter feed. The waste disposal, separated from the mineralisation, represented 46.1% by mass of material at an average grade of 0.38 g/t Au.

Sorting tests carried out with Steinert in Kentucky using a Steinert KSS FLI XT machine with XRT, colour, laser, and induction sensors yielded comparable results.

A 80.69 kg production sample, representative of the mineralised facies at an average grade of 2.13 g/t Au, to which 20% by mass of material at zero grade of gold was added mathematically, representing the dilution in the workings, was used for testing. The new calculated diluted grade was 1.55 g/t Au.

Calculation of the results revealed that 51% by mass of the dilute grade material could be separated as a preconcentrate at an average grade of 2.72 g/t Au, representing a 175% increase in gold grade compared with the sorter feed. The waste disposal, which would be separated from the mineralisation, would represent 49% by mass of material at an average grade of 0.36 g/t Au.

Sorting tests with COREM were carried out following these tests to validate that the 20% of dilution material at zero grade of gold, mathematically added, could physically be effectively separated by the sorter, Cartier said.

The sorting tests carried out by both COREM and Steinert US were comparable, with these results providing prospects for increasing the value of the resources with ore sorting technology.

The objective of the industrial sorting of the mineralisation is to increase the grade of the preconcentrated material preceding the milling operations, which allows an increase in the recovery rate at the mill, reduces transport costs to the mill, reduces milling costs, reduces the costs of environmental restoration of mine tailings, and reduces the environmental footprint of mine tailings and, consequently, increases the social acceptability of the mining project, Cartier said.

The most recent resource estimate from Chimo included 6.6 Mt at an average grade of 3.21 g/t Au for a total of 684,000 oz of gold in the indicated category and 15.2 Mt at an average grade of 2.77 g/t Au for a total of 1.36 Moz of gold in the inferred category.