Tag Archives: Rob Humphryson

Modular Steinert KSS sorting plant heading to Novo’s Pilbara deposits

Novo Resources has advised that Phase 2 mechanical sorting trials of its Pilbara deposit bulk samples will commence from early December 2021 following the dispatch of a Steinert KSS 100F LIXT fine mechanical sorting unit, due to be commissioned at its operation in Western Australia over the next few weeks.

The sorter will be installed adjacent to the company’s Golden Eagle processing facility in Nullagine.

Fifty samples from four different deposits across the Pilbara, ranging in size from 800 kg to approximately five tonnes, will be crushed and screened into three size fractions prior to testing through the sorter. The bulk samples will be processed by the sorter to produce a concentrate for gold assay.

Once this second phase of testing is complete, expected around the June quarter of 2022, the next phase of the test work will involve relocating the sorter to the company’ Comet Well project in Karratha, Western Australia, and commencing proposed large-scale bulk sample sorting test work of 20,000 t, leading to potential commercialisation of mechanical sorting for Pilbara conglomerates, Novo said.

The sorter infrastructure, designed and constructed by OPS Screening and Crushing Equipment, is a fully modular and containerised turnkey plant deployable to any of Novo’s tenements in the future for test work and potential large bulk sampling and processing, according to Novo. The sorter includes feed and product transfer conveyors, allowing the sorter to produce gold-bearing concentrates in a single pass for further upgrading or downstream processing.

This trial of the sorter within the Golden Eagle processing facility area is a culmination of several years of test work conducted by Novo to determine the amenability of mechanical sorting to its 13,250 sq.km of tenements across Western Australia.

“Mechanical sensor-based sorting utilises X-ray technology, 3D colour laser and metal induction to identify gold-bearing material,” Novo said. “A high-pressure air jet ‘shoots’ these gold-bearing particles into a collection system to produce a concentrate for further downstream processing.”

Rob Humphryson, CEO and a Director of Novo, said: “Mobilising the mechanical sorter for Phase 2 field trials represents an important step in progressing this innovative technology. We are looking forward to observing sorter performance from field samples collected at Comet Well, Purdy’s Reward, Talga Talga and Egina ahead of larger-scale field trials at Comet Well and Purdy’s Reward scheduled for Q2 (June quarter) 2022.”

Novo Resources to take Steinert ore sorter into the field

Novo Resources says it is in advanced discussions with Steinert Australia to procure a 1 m wide KSS 100F LIXT fine mechanical sorting unit, to be deployed at its wholly-owned Purdy’s Reward and Comet Well JV gold projects, in Western Australia, during the 2020 field season.

The sorter will be manufactured by Steinert in Germany with an expected 18-week delivery time to Australia, Novo said.

Approvals are being prepared for field testing of up to 10,000 t of material from Purdy’s Reward, Comet Well, and 47K, respectively (total up to 30,000 t). Novo also plans to utilize this sorter to test field exploration samples delivered from its other projects including Egina, it said.

Field test work will be designed to better understand gold grades, the extent and location of mineralised conglomerate units, evaluate mechanical sorter gold recovery at production throughput rates and of various sorted size fractions, and provide critical input concerning operational costs, the company explained.

The company has previously carried out ore sorting test work in the lab on samples from its Reward and Comet Well JV gold projects.

Rob Humphryson, Novo’s CEO and a Director, said: “We have achieved outstanding laboratory level mechanical sorting test results utilising both Steinert and TOMRA sorters. It is now time to field test productivity and performance. This Steinert unit will be equipped with technology that is capable of testing material from all our coarse gold projects.”

Humphryson said the decision to initially deploy a Steinert unit into the field was more a reflection of “local, non-technical factors” than any distinct differentiation of capabilities between the two suppliers’ sorters.

He added: “Should field testing of mechanical sorting prove successful, it is likely that the final utilisation of this technology will involve a hybrid solution involving equipment from both suppliers. In light of this, we intend to maintain a close working relationship with both suppliers.”

Steinert ore sorting tech picks up the Beaton’s Creek gold fine print

Novo Resources says initial laboratory-scale tests using Steinert mechanical ore sorting technology indicates an upgrade of gold into significantly reduced mass is achievable at the Beaton’s Creek project in Western Australia.

The mechanical sorting tests carried out in Australia on the Beaton’s Creek bulk sample showed that nuggety gold occurring in Beaton’s Creek conglomerates is finer grained (generally sub 1 mm) than gold at Novo’s Egina and Karratha projects (generally over 1 mm), the company said. The company is also considering using ore sorting at these two projects.

Test work was conducted on a 2.8 t split of crushed (-50 mm) and screened Beaton’s Creek bulk sample material, with analyses conducted as part of this sorting test work generating a calculated head grade of 5.72 g/t Au for the bulk sample. The vast majority of gold reported to mechanically sorted concentrates in each of the three size fractions tested, with 90.2% of gold recovered in 54.5% of the mass of the +18/-50 mm fraction; 68.8% of gold recovered in 42.4% of the mass of the +6/-18 mm fraction; and 95.5% of gold recovered in 20.3% of the mass of the +2.3/-6 mm fraction.

Material finer than 2.3 mm, comprising 17% of the total mass of the bulk sample, was not tested due to excessive dust issues, the company said. “Novo believes such material is treatable by means of gravity concentration,” it added.

“Test results are considered indicative, and Novo and Steinert see additional opportunity to optimise sorting conditions and parameters that may result in further efficiencies,” the company said. “Nevertheless, these tests indicate robust potential for upgrading nuggety conglomerate gold mineralisation, and perhaps, a broader spectrum of gold mineralisation types.”

A second 2.8 t split of the same bulk sample material has been delivered to TOMRA Sorting’s mechanical sorting test facility in Castle Hill, New South Wales, where it will soon undergo similar testing using various TOMRA mechanical sorters, the company said.

Rob Humphryson, CEO and Director of Novo Resources, said: “We are highly encouraged by these initial results. We are already fully confident about the outcome of Egina mechanical sorting test work, which demonstrated excellent recoveries into very small concentrates. Our Beaton’s Creek test work is more investigative in nature owing to the finer gold grain size, so to achieve such levels of upgrade in first phase testing is remarkable.”

He added: “Test work is being developed and supervised by Novo staff specialising in mining engineering, metallurgical processing, and importantly, our geology team. This means those people engaged in exploration are fully aware of the profound impact that mechanical sorting potentially imparts on the economic viability of our prospects. Mechanical sorting test work is likely to become an integral part of future exploration and economic modelling as we hopefully progress each of our projects towards production should the economic viability and technical feasibility of the project be established.”

Novo heralds ore sorting developments as it lines up Steinert and TOMRA trials

Novo Resources Corp says it is planning mechanical sorting test work on multi-tonne samples of gold-bearing conglomerate from its Beatons Creek project (pictured) and gold-bearing gravels from its Egina project, both in Australia, with Steinert Global and TOMRA.

Mechanical sorting of small particles of gold is seen as a potentially important breakthrough for Novo and its various nuggety gold projects throughout its large land holdings across the Pilbara, the company said.

An approximate 5 t sample of Beatons Creek gold-bearing conglomerate and an a similar sized sample of Egina gold-bearing gravel have been shipped to Perth for sorting trials at Steinert Global’s test facility in December. Conglomerate from Beatons Creek is being crushed and screened, and gravel from Egina is being screened in preparation for test work.

Once mechanical sorting tests have been completed at Steinert Global, bulk test material will be shipped to TOMRA’s test facility in Sydney for testing during the March quarter of 2020, Novo said.

Novo, earlier this month, said recent tests of Steinert mechanical sorting equipment had demonstrated recovery of fine gold nuggets as small as 0.4 mm, which was a significant step toward a potentially cost-effective “dry and chemical free” means of gold recovery.

The test work is designed to assess the veracity of recent advances in scanning and sorting capabilities of both companies, while determining – on Egina material, at least – the gold recovery capabilities of this technology as a means of primary separation; the applicability of mechanical sorting as a tool to support field exploration activities; and which model of mechanical sorter is preferred for deployment for field trials.

“Owing to recent rapid advancements in mechanical sorting technology, Novo has conceptualised a potentially viable alternative ‘dry’ processing pathway for Beatons Creek,” it said.

While testing is required to better assess sorter manufacturer claims that fine gold particles can be detected and sorted, according to Novo, the company said it sees considerable merit in this ‘dry’ processing model for the following reasons:

  • Potential to significantly reduce capital and operating costs compared to conventional ‘wet’ processing schemes;
  • Potential to reduce construction timeframe compared to conventional ‘wet’ processing;
  • ‘Dry’ processing schemes might be amenable to modular design suited to cost-effective mobilisation and relocation;
  • Negates or minimises use of water and chemicals; and
  • ‘Dry’ processing could help unlock Novo’s other assets in the East Pilbara region.

Successful mechanical sorter trials of Beatons Creek material are anticipated to lead to a larger metallurgical test work program to fully assess means of crushing, screening and sorting to be incorporated to a process flowsheet, the company said, adding that it foresees using proven technologies given there is a spectrum of commercially available equipment for dry crushing, grinding and screening.

Rob Humphryson, CEO and director of Novo Resources Corp, said: “The pace of development of mechanical sorting technology continues to astound us. We are fortunate that our nuggety gold deposits appear to lend themselves to ‘dry’ processing pathways involving mechanical sorters, technology that may generate favourable economic and environmental outcomes.

“Considering we can readily access outcropping gold mineralisation on all of our properties, we have a unique opportunity to quickly collect bulk samples for testing mechanical sorting technology on a meaningful scale.”

Novo looks to scrap metal industry for Egina gold nugget separation options

Novo Resources says it has completed encouraging processing trials on gravels extracted from its joint venture Egina gold project, in the Pilbara of Western Australia, at Steinert’s testing facility in Cologne, Germany.

Phase one of the company’s joint venture with Sumitomo Corp at the Egina gold project centres around gaining a better understanding of geology (grade, continuity, controls, gold particle size distribution, gold location within gravels, gold genesis, etc.) but also involves high level desktop studies and trials to develop potential future processing and mining methodologies.

Preliminary tests of eddy current separator (ECS) technology indicate promising potential to directly extract gold nuggets from gravel, the company said. This is one of several dry processing methodologies being considered by Novo for gold recovery at the project.

Tests conducted on a spectrum of nugget sizes ranging from 1-10 mm demonstrated consistently high gold nugget recovery via ECS technology. Nuggets that underwent testing were recently extracted from gravels at Egina, the company said.

ECSs are predominantly used to recover select metals in the scrap metal industry. Material is fed onto a conveyor, the head pulley of which contains an adjustable high-powered magnet spinning at very high rotation rates, 4,000 rpm in Novo’s tests, independent of the speed of the conveyor, Novo said. This spinning magnet induces an alternating magnetic field that differentially repels non-magnetic metals such as gold.

This magnetic repulsion causes gold nuggets to lift, or fling, off the end of the conveyor belt where they can be separated from waste material by a steel plate. These trials were designed to establish whether Egina gold nuggets react sufficiently to reliably be separated from waste material.

Novo said: “Gold at Egina predominantly occurs as free nuggets of which most are above 1 mm in size. This presents opportunity to explore innovative technologies, some used commercially in other applications such as ECS technology, to assess their efficacy for use at the Egina gold project.”

In addition to ECS technology, Novo conducted initial testing of Steinert mechanical sorting technology to detect small gold nuggets utilising an Argos EM electro-magnetic sensor, it said. Fine gold nuggets, around 1 mm, were consistently and readily detected indicating potential for direct mechanical sorting of gold nuggets, Novo said.

As a result, a combination of mechanical sorting and ECS technology is also being considered as a potentially viable means of dry processing at Egina, the company said.

Rob Humphryson, CEO and Director of Novo, said: “We are very encouraged by these initial laboratory test results utilising ECS technology. Our mantra when testing new technology and its application to our projects is to ‘test quickly and test cheaply’, and we now have in hand sufficient encouragement from these tests to consider ECS technology highly prospective for application in the field.”

The company said this preliminary testing shows ECS technology can play an important role at Egina, with potential application as a processing solution or an exploration tool, or both. “This technology generates significant inherent advantages: it requires no water, no chemicals, is of low capital cost and is readily mobile. It can also be employed along with other technologies and is scalable,” the company said.

Novo thinks field tests are warranted at larger scale to better understand recovery efficiencies, operating costs and throughput rates and the Company plans further work with Steinert to study schemes in which ECS machines, or ECS machines in combination with mechanical sorting technology, can achieve efficient recovery of gold nuggets at Egina.

The company concluded: “As Novo learns more about gold size particle and mass distribution of gold in Egina gravels, the company can then begin to estimate gold recovery.”

TOMRA upgrades bulk samples at Novo’s Karratha gold project

Novo Resources has announced gold-rich assay results from concentrates generated by mechanical sorting trials conducted on four bulk samples from its Karratha gold project in Western Australia.

In order to test the potential viability of mechanical rock sorting as a means of concentrating gold from conglomerates at Karratha, four bulk samples were collected, crushed, screened and tested using a TOMRA mechanical rock sorter. High-grade assays from sorted rock concentrates have provided a first indication that this technique is effective at upgrading gold into small volume concentrates.

Mechanical sorting was conducted on material ranging from 6 to 63 mm. Fractions larger than 63 mm and finer than 6 mm are currently undergoing assaying and, once all analyses have returned, an assessment of the effectiveness of mechanical rock sorting will be made, Novo said.

Mechanical rock sorted concentrates range from 0.07-0.48% of total sample mass, a remarkably small fraction. Given the high-grade assays of these concentrates, ranging from 92.1-792.4 g/t Au, it appears gold is being significantly upgraded by mechanical rock sorting, the company added.

“Optimising crushing to reduce volumes of fines and oversize, effectively maximising the amount of material being sorted, should further improve the potential of this technology,” Novo said, adding that mechanical sorting technology could be a critical component of the Karratha gold project moving forward.

Rob Humphryson, CEO and Director of the company, said: “Concentrate grades received from the recent TOMRA mechanical rock sorting trials are impressive, reflecting the capability of the scanning and sorting technology to differentially select gold bearing rock.

“Total system gold recovery efficiency will be fully understood upon receipt of assay results from all process streams and feed size ranges, with these results expected during January 2019.”