Tag Archives: Scania

Scania’s autonomous trucks to debut at Element 25’s Butcherbird manganese mine

Scania and Australia-based services provider Regroup say they will launch the world’s first fleet of Scania autonomous in-pit mining trucks in the Pilbara in 2025 with a rollout planned at Element 25’s Butcherbird mine.

Building on the recent announcement of the start of sales for commercially-available autonomous trucks, Scania today announces it will supply its first fleet of autonomous trucks to Regroup.

The world-first fleet of 11 autonomous rigid G 560 8×4 tippers, transporting manganese ore for Element 25 at its Butcherbird site, is planned to start work in late 2025 in Western Australia’s Pilbara region. Scania, Regroup and Element 25 will now work collaboratively to finalise the particulars regarding this solution, and to align with the expansion of the Butcherbird mine.

“Scania in Australia has been working closely with several partners in the local mining industry over recent years to finesse our autonomous truck programme in advance of this announcement,” Scania Australia Managing Director, Manfred Streit, says. “We are delighted that this historic event, the first order globally for a fleet of Scania’s new autonomous trucks, has been made by a privately-owned Australian company, which will provide these trucks for use in an Australian mining environment.”

Peter Hafmar, Head of Autonomous Solutions, Scania, said: “With this fleet order, we bring to commercial reality the concept of an autonomous fleet working at scale in demanding real-world conditions. We anticipate the Regroup fleet deployment will be the first of many, as operators around the world see the safety, productivity and ease-of-use benefits of Scania’s technology.”

Regroup, a fully integrated civil, mining and bulk commodities haulage partner, sees the autonomous truck fleet as the first critical stage in its path towards a zero-tailpipe emissions mining fleet future.

Regroup Managing Director, Michael Still, says: “Along with Scania, we are excited to be establishing our first fleet of autonomous vehicles in the Australian mining industry. It is not lost on us that we are able to collaborate with one of our key, and long-standing partners in Element 25 as we look to roll this solution out across their site. We have always been aligned in our values in supporting industry innovation and the electrification of the global vehicle fleet. It is great that we can demonstrate this on site.

“Regroup has excelled at initiating and delivering sustainable and renewable practices, and these new autonomous trucks are just the first step in our transport plan. We are looking forward to adding Scania zero emission autonomous mining trucks as the next step. In addition to the autonomous trucks coming next year, we have also ordered a driver-operated battery-electric Scania rigid 8×4 truck that we will look to incorporate into the Element 25 Butcherbird operation which will serve as a water cart, underlining our overall aim of decarbonising our mining activities.

“We’re investing eight figures with Scania to establish a fully autonomous onsite mining haulage fleet. Regroup has a track record in investing in innovative fleets.”

Still says he views the autonomous Scania fleet as being able to also reduce its diesel consumption, as the operator moves from a larger capacity fleet of 100-200 t vehicles to a smaller class unit. From a decarbonisation perspective, Regroup is also expected to burn less fuel on site.

Regroup has grown tenfold over the past four years. It provides plant, people and expertise across several construction and mining sectors.

“We worked out early on that we needed to develop into a full-service offering,” Still says.

“We’ve grown quickly from 22 staff to 250. In that same time, we have spent and committed over A$100 million ($68 million) on new assets. So, we’re very serious about fresh fleet…When new technology and opportunity comes along, we’re able to invest. Our aim longer term is to fully electrify the fleet.”

Regarding the new autonomous fleet, Still says there will be no reduction in the driver cohort, because the new fleet will be operating as an expansion of a current program, so no additional drivers will be sought.

He said: “We’ve certainly done our homework in terms of people that are using the Scania product. But there is a leap of faith involved with commercialising an autonomous solution from Scania for the first time in the world. With anything that you do for the first time there’s going to be a leap of faith because there’s no baseline data, but one of our values is to think big.

“Looking at our data projections, against maybe a small site, autonomous is more expensive, but the more volume you’re required to move, the cheaper the solution becomes, because your operator numbers don’t increase.

“Yes, your trucks increase, but your operators don’t necessarily increase because you’ve got a control room with the same setup. Your setup costs are in fact locked. So, it’s then spread out over more trucks and more volume and then the trucks made complete sense.

“But even at the lower volumes, whilst it looked like on paper there was an increased cost to us providing the solution, when you consider the cost of flights, the cost of transporting people to sites, and the cost of accommodating people, almost got it to a cost neutral point, even with four trucks.

“But at 10 to 11 trucks running, there is a financial benefit to our client. And even while still a diesel truck, just in fuel economy and reduction in carbon emissions, there’s a benefit to our client,” he says.

Robert Taylor, Head of Mining at Scania Australia, said: “Regroup is a business on a rapid path to expansion, having been voted the top regional business of the year in Western Australia.

“We can see that Regroup and Element 25 will benefit from reduced operating costs using our autonomous trucks, decarbonising their operations, and transferring labour requirements from the field to remote control room locations, which are also safer working environments. So, this fleet will provide a win-win for all parties.”

Fortescue ready to disrupt the decarbonisation status quo

It was hard to keep up with Fortescue at MINExpo 2024, in Las Vegas, last week – IM did its best – with the mining company having on-booth presentations throughout the three days and four press events on four other stands during the show.

The company’s presence was felt far beyond this, with the headline $2.8 billion agreement to supply 475 new Liebherr machines featuring Fortescue’s innovative green technology to Fortescue’s operations in Western Australia being a major talking point.

This was swiftly followed by announcements that the company would work with MacLean on delivering a fleet of 30 GR8 electric graders to its sites, take delivery of Australia’s first Epiroc Pit Viper 271 E (PV271E) electric-driven blasthole drill rig at one of its mines, and work with Scania on developing and validating a fully integrated autonomous road train solution, leveraging Scania’s technology in truck automation and Fortescue’s own fleet management system (FMS).

The common theme among all these was the perception that Fortescue should be viewed as more than just a mining company.

“There is an opportunity here for Fortescue to be seen as a technology company, as opposed to solely an iron ore miner,” Dino Otranto, CEO of Fortescue Metals, told IM after another press event appearance.

The technology the company acquired and is now deploying via its purchase of Williams Advanced Engineering in early 2022 is a key part of this transition. This has led to the development of battery-electric solutions as well as charging solutions – Fortescue Zero now has a 6 MW charging solution to call on.

Otranto got into some of the specifics behind this offering – including mention of an in-house DC-DC converter that is significantly smaller than other ultraclass battery-electric trucks showcased at the show, as well as batteries that are both cheaper and offer higher power densities than others on the market – and said these elements would all come into the Liebherr and MacLean machines that appear on site in Western Australia.

The Fortescue MINExpo 2024 booth was a hive of activity, with many interested parties looking to find out more about the company’s battery-electric solutions

He went further than this though, outlining how the company’s “Fortex” solution – which combines autonomous haulage, FMS and Level 9 collision avoidance – would seamlessly integrate all the elements to create optimised autonomous and electric sites of the future.

“What we are developing with Fortex is akin to Android,” he said. “Where the traditional OEM models lock you into Apple and iOS, we want to offer an Android-style open source platform that allows you to share data and interface with other apps within the ecosystem.

“You will soon see us demonstrate that through the process of a traction power system at a mine site.”

With some of the energy requirement numbers for full battery-electric fleets being discussed today it is hard to see any company being able to commercialise zero-emission fleet haulage solutions without an overriding energy management platform. The operation will inevitably have to be optimised (read: automated) to ensure no kilowatt of energy is wasted and no machines run out of battery power. Add in automation, and the safety element around vehicle interaction also comes into play.

The AHS solution Fortescue and Liebherr have jointly developed as part of its latest rollout in Western Australia has a fleet management assignment engine at the core to monitor fleet energy levels. This should mean material movement and energy replenishment tasks can be assigned efficiently within zero emission fleets equipped with the system.

In this regard, Fortescue has its ‘ducks in a row’ to compete with the traditional mining OEMs in the evolving decarbonisation space.

The company will have to take these OEMs on, with Otranto acknowledging there are a finite number of Liebherrs and MacLeans willing to provide the machines that the company’s batteries will power, as well as an even smaller pool of companies open to accepting the type of AHS and FMS integration Fortescue currently envisages.

“We’re aware that some OEMs will do everything they can to protect their supply chain, but what we are offering – especially on the software side – represents real disruption,” Otranto said.

“We are looking to take a decent market share in the mining sector when it comes to decarbonisation, but there are even bigger opportunities outside of mining – in construction, in shipping, with locomotives, etc.”

IM Editor, Dan Gleeson (left), with Dino Otranto, Fortescue Metals CEO (right), at MINExpo 2024

Such a move would bolster the company’s bottom line, as well as allow Fortescue to be rated by the investment community as something equivalent to a technology stock: a status that comes with premium trading multiples.

This business model adaptation already appears to be gaining traction.

IM has spoken to mining companies in touch with Fortescue about potentially deploying some of its solutions within a mine decarbonisation context.

Reuters also reported, last week, that Fortescue and Liebherr have secured orders for 100 autonomous battery-powered mining trucks for other mining and transport companies, quoting Fortescue Executive Chairman, Andrew Forrest.

Fortescue is evidently ready to disrupt the decarbonisation status quo. The question is: is the wider mining company community willing to accept this new market dynamic?

Fortescue, Scania to develop fully integrated autonomous road train solution

Fortescue and Scania have agreed to jointly develop and validate a fully integrated autonomous road train solution, leveraging Scania’s technology in truck automation and Fortescue’s own Fleet Management System (FMS).

The autonomous solution would be developed, tested and validated in partnership at Fortescue’s iron ore operations at Christmas Creek.

“By utilising Scania’s extensive knowledge in supplying trucks to the mining industry and our expertise in autonomous driving, the Road Train solution will reduce the overall mining footprint,” Manfred Streit, Managing Director at Scania Australia, said.

With Scania’s technology in truck automation, the autonomous solution would be integrated with Fortescue’s FMS designed to optimise fleet utilisation and maximise productivity, while ensuring efficient fuel and energy consumption to reduce carbon emissions. The solution would also integrate Scania’s on-board autonomation hardware and technology for the Scania R770 prime mover platform, coupled with three trailers weighing 120 t with a payload of 240 t.

“This is a great opportunity for Scania to learn more about autonomy in demanding conditions with an innovative partner,” Peter Hafmar, Head of Autonomous Solutions, Scania, says.

Fortescue Metals Chief Executive Officer, Dino Otranto, says: “Our deep expertise in autonomous haulage has enabled us to jointly develop a unique autonomous solution that unlocks high grade, satellite deposits for us to mine economically. This project would help us maximise productivity with unique low-cost solutions in our mining value chain.”

Scania Australia has been working closely with Fortescue for many years, and is pleased to see this joint development project become a reality.

Robert Taylor, Head of Mining at Scania Australia, said: “Their heavy haul trucks operate in an incredibly harsh environment. The local and global mining specialists have devised a solution that will bring both efficiency and safety.”

LKAB cuts the ribbon on new mine entrance at Malmberget iron ore op

Earlier this week, a historic moment in the history of the LKAB mine in Malmberget, Sweden, was celebrated when a new mine entrance was inaugurated together with a new workshop area. The relocation of the mine entrance and the construction of the new facilities are some of the first visible signs that LKAB’s transformation to a carbon-dioxide-free process has begun, the iron ore miner says.

The workshop area consists of a new recycling centre, a new workshop for crusher repair and a new piping workshop. Together with the new mine entrance, they are part of the preparatory work that is put through to create the conditions for developing the value chain on site in Gällivare/Malmberget.

“The preparatory work frees up space in the industrial area and brings us closer to our plans to take the next step in the processing of iron ore in Gällivare/Malmberget,” Monika Sammelin, Area Manager at LKAB in Malmberget, says.

A ceremony with a kind of different ribbon cutting was held at the mine entrance where an all-electric truck from Scania was the first vehicle to pass through the entrance and at the same time “cut” the ribbon. Sammelin declared the mine entrance and workshop area inaugurated and says: “Today, the electric truck symbolises the work we are doing to electrify the mine in order to be able to deliver fossil-free iron ore to the demonstration plant for sponge iron that we will build here in Gällivare/Malmberget.”

The electric truck is a Scania Heavy Tipper, which is one of the electric and battery-powered vehicles that LKAB is testing and evaluating in the work of replacing the diesel-powered vehicles and, at the same time, making the mine autonomous, digital and electric. It is not yet approved for underground operation, and is currently only being tested above ground.

Back in 2022, LKAB and Scania agreed to trial an electric Scania Heavy Tipper truck at Malmberget, alongside an electric crane truck specially adapted for these mining operations, giving Scania a chance to test and operate fully-electric trucks in a demanding underground mine environment.

The new mine entrance was opened on June 12, 2024, the day after the inauguration. At the same time, the old driveway, which was built in 1966 and made it possible to travel by car in the mine, was closed.

Sammelin says: “Relocating a new entrance is something that rarely happens during the lifetime of a mine. Starting in April 2022, we have operated a 536-m-long tunnel from level 278 (underground) up to the ground surface. The mining operations has been carried out by our internal employees and it feels great to be able to inaugurate the new mine entrance today.”

IOCA names REGROUP Australia as preferred primary contractor for Hancock iron ore project

Alien Metals Ltd’s wholly-owned subsidiary Iron Ore Company of Australia Pty Ltd (IOCA) has named REGROUP Australia as its preferred primary contractor to undertake the construction works, mining operations and haulage services for its flagship Hancock iron ore project in the Pilbara of Western Australia.

IOCA has conducted a competitive market engagement over the previous six months to identify commercially and technically adept contractors to undertake works as part of the Hancock development and operations. This process has involved pre-qualified and targeted proponents submitting bids for specific scopes of works and agreeing to key commercial terms.

REGROUP is, Alien Metals says, a highly renowned and experienced civil construction, mining operator and haulier, having executed projects that exceed A$100 million ($64 million) on multiple occasions. It operates one of the largest privately and independently owned fleets in Western Australia, with clients that include Newcrest Mining, Roy Hill and Element 25.

The selection of REGROUP allows the company to update its financial model as part of the definitive feasibility study (DFS) work streams, Alien Metals says.

As part of the preferred construction contractor award, REGROUP would be in charge of construction of an intersection of the project area at the Great Northern Highway and construction of an access track from the Great Northern Highway to the mine site.

REGROUP has also been selected as the preferred operations contractor for:

  • Mining services (that is inclusive of any drilling and blasting activities); and
  • Haulage services for the haulage of ore from the mine site to Port Hedland.

The award of this contract remains subject to the completion of a positive DFS, approvals, funding and the Board making a final investment decision.

The 2021 scoping study on Hancock showcased a 1.25 Mt/y production profile that would sustain an eight-year life of mine with current resources. The company has said it plans to make its first shipments in 2023, leveraging its direct shipping ore options.

Troy Whittaker, Chief Executive Officer of Alien, said: “Securing REGROUP as a key contractor for the Hancock project is a significant milestone for the company…This is the first step in locking in relationships with contractors on the back of the IOCA sourcing process, securing competitive pricing from contractors, which moves planning for the project forward.

“We are excited to partner with REGROUP, a company that shares our values. REGROUP has set the goal of becoming carbon neutral via the use of a fully battery-powered fleet and the utilisation of solar and wind to help power their sites. That combined with their commitment to advancing indigenous businesses, notably through the championing of Maramara in Western Australia, a majority Indigenous-owned Pty Ltd company, is one of the reasons why we teamed up with REGROUP.”

Michael Still, Managing Director of REGROUP, said: “REGROUP is looking forward to working with IOCA, firstly in the establishment of their mine, as well as the long-term success of the operations from pit to port. We also see a great opportunity to support First Nations business, Maramara, in delivering the civil scope of this exciting project. We would utilise our expertise as a Pilbara-based business and being a partner of a values-based miner such as IOCA, we are eager to see the impact we know this project will have on the Pilbara communities.

“In being a greenfields site, the Hancock project lends itself well to autonomous and electrified solutions for both the mining and bulk haulage fleet. We will continue to work with our partners in Scania and Janus to integrate new and emerging technologies where practical, both on-site and in Port Hedland. The consolidation of the construction and operational activities under one group will facilitate speed to market for IOCA and provides us with the opportunity to embed our expertise early in the project.”

HARD-LINE’s TeleOp tech to be offered as part of HxGN Autonomous Mining portfolio

Hexagon’s Mining division has enhanced its collaboration with Canada-based tele-remote technology leader HARD-LINE, building on a previous distribution agreement the two companies announced back in September 2021.

HARD-LINE’s TeleOp technology allows the tele-remote operation of heavy machinery from a control station in a safe area on surface or underground, regardless of distance. In addition to safety benefits, there are significant productivity advantages to deploying such technology, utilising the equipment over shift changes in underground mines, for example.

Hexagon’s Mining division’s relationship with this technology was previously made up of a distribution agreement. Now, TeleOp is being incorporated into the wider automation offering that comes under the recently announced HxGN Autonomous Mining portfolio.

Speaking last week at HxGN LIVE Global 2023 in Las Vegas, Rob Daw, Chief Innovation Officer at Hexagon’s Mining division, said: “We are strengthening that partnership with HARD-LINE to enhance what the tele-remote solution can do and bring it together into the wider autonomy offering we have within Hexagon’s Mining division.”

HARD-LINE says it has developed “by-wire solutions” for more than 200 equipment models covering several OEMs, with more than 3,000 conversions completed to date.

The closer collaboration between the two companies is already being witnessed in Brazil where Hexagon’s Mining division, HARD-LINE, Scania and Fidens are working on the deployment of teleremote technology at a mine in the country.

Rodrigo Couto, President, LATAM, Hexagon’s Mining division (on the far right), explained: “In Brazil, there is a law dictating that you cannot operate equipment on a manual basis by areas deemed too risky, such as tailings dams, decommissioned & other reclaimed areas. This means tele-remote technology and automation are the only choice to carry out operations.”

Hexagon’s Mining division and HARD-LINE have sold several kits to clients in the country, with one of these kits heading to an operation overseen by Fidens, which has installed a tele-remote kit on a Scania G 500 6×4 Prime Mover.

Couto said: “This is reducing the risk of operators at the tailings operation and also allowing Fidens to operate in areas that, by law, were previously off limits.”

BluVein’s underground dynamic charging developments accelerating

BluVein, after officially receiving agreement and project approval from all project partners, has initiated the third phase of technology development and testing of its underground mine electrification solution, BluVein1, it says.

BluVein is a joint venture between Australia-based mining innovator Olitek and Sweden-based electric highways developer Evias. The company has devised a patented slotted (electric) rail system, which uses an enclosed electrified e-rail system mounted above or beside the mining vehicle together with the BluVein hammer that connects the electric vehicle to the rail.

The system, which is OEM agnostic, provides power for driving the vehicle, typically a mine truck, and charging the truck’s batteries while the truck is hauling load up the ramp and out of an underground mine.

The underground-focused development under BluVein is coined BluVein1, with the open-pit development looking to offer dynamic charging for ultra-class haul trucks called BluVein XL. This latter project was recently named among eight winning ideas selected to progress to the next stage of the Charge On Innovation Challenge.

The purpose of the third phase of the BluVein1 technology development is to:

  • Conduct a full-scale refined hammer (collector) and arm design and testing with a second prototype;
  • Execute early integration works with mining partners and OEMs;
  • Provide full-power dynamic energy transfer for a vehicle demonstration on a local test site; and
  • Confirm a local test site for development.

IM understands that the company is close to sealing an agreement for a local test site where it will carry out trials of the dynamic charging technology.

James Oliver, CEO, BluVein, said the third phase represents an essential final pre-pilot stage of BluVein1.

“It excites me that the BluVein solution is becoming an industry reality,” he said. “The faster BluVein1 is ready for deployment, the better for our partners and the mining industry globally.”

BluVein recently entered a Memorandum of Understanding with Epiroc, where the Sweden-based OEM will provide the first ever diesel-to-battery-converted Minetruck MT42 underground truck for pilot testing on the slotted electric rail system from BluVein.

“This MoU also ensures that we are designing and developing the system into a real-world BEV for full-scale live testing and demonstration on a pilot site in 2023,” BluVein says.

In addition to Epiroc, IM understands BluVein is working with Sandvik, MacLean, Volvo and Scania, among others, on preparing demonstration vehicles for the BluVein1 pilot site.

The BluVein1 consortium welcomed South32 into the project in May, joining Northern Star Resources, Newcrest Mining, Vale, Glencore, Agnico Eagle, AngloGold Ashanti and BHP, all of which have signed a consortium project agreement that aims to enable final system development and the construction of a technology demonstration pilot site in Australia.

The project is being conducted through the consortium model by Rethink Mining, powered by the Canada Mining Innovation Council (CMIC), which CMIC says is a unique collaboration structure that fast-tracks mining innovation technologies such as BluVein and CAHM (Conjugate Anvil Hammer Mill).

Carl Weatherell, Executive Director and CEO, CMIC/President Rethink Mining Ventures, said: “With the urgent need to decarbonise, CMIC’s approach to co-develop and co-deploy new platform technologies is the way to accelerate to net zero greenhouse gases. The BluVein consortium is a perfect example of how to accelerate co-development of new technology platforms.”

Oliver concluded: “The BluVein1 consortium is a great reminder that many hands make light work, and through this open collaboration with OEMs and mining companies, we’re moving faster together towards a cleaner, greener future for mining.”

Boliden on mining’s differentiation pathway

When Mikael Staffas joins a panel on stage at the EIT Raw Materials Summit in Berlin, Germany, to discuss building a world-leading raw materials industry for Europe next month, he will be able to reference more than a few examples of sector excellence from his own company.

The Sweden-based mining and metals company has been leading from the front for decades, leveraging new and innovative technology, employing a more diverse workforce and engaging local stakeholders and regulators in a manner viewed as progressive from peers across the globe.

Gaining recognition from your mining company peers is one thing but gaining it from the public and EU-based decision makers is something altogether different.

According to Staffas, CEO of the company, the latest summit, which takes place on May 23-25, is part of a series of actions and events slowly getting these two groups to understand the importance of raw materials and the companies that produce them.

“We are moving this industry away from a perception that we are part of the problem, to an environment where we are seen to be part of the solution,” he told IM.

Staffas says the raw materials industry has been viewed as fundamentally important to Europe for several years in terms of tackling the climate change challenge – which will be reinforced at the summit – but the “regionalisation of economies” that has been brought about by COVID and the more recent geopolitical situation means this importance has, once again, been reinforced.

Within this context, Staffas is due to discuss at the event the fundamental need for copper and nickel in the energy transition. He will also shine a light on the importance of lead and zinc in this evolving landscape.

Boliden, through its mines and smelters in Finland, Sweden, Norway and Ireland, is a producer of all four of these metals. It can also add gold, silver, sulphuric acid, cobalt and palladium to the list.

As the general population is beginning to understand the importance of these raw materials and metals to their future, Boliden is trying to differentiate its own offering from the rest of its peers.

Not satisfied with simply matching the industry’s carbon emission and net zero goals to 2030 and beyond, Boliden has laid the gauntlet down to the rest of its competitors by registering two new products: Low-Carbon Copper and Low-Carbon Zinc.

The formula for these two low-carbon products is based on the production of finished metal, from cradle to gate, that has emissions of less than 1.5 t of CO2 per tonne of copper, compared with the global average of around 4 t of CO2 per tonne. For zinc, the threshold is even lower – less than 1 t of CO2 emissions per tonne of zinc, compared with the industry average of 2.5 t.

To this point, the introduction of both products has resulted in a slim premium over other products on the market, but Staffas still deems the launches as successful.

“The point was to differentiate our products, with many people expected to receive this differentiation,” he said.

The customers represented just one set of recipients, but Staffas said these new products also play into the ‘licence to operate’ equation, as well as discussions with authorities and non-governmental organisations.

The intention was to also lay down a benchmark the rest of the industry could start to use or discuss, he added.

Boliden’s carbon dioxide calculations include emissions along the entire value chain up to the customer according to the Scope 1, 2 and 3 Greenhouse Gas Protocol Product Life Cycle, following the ISO 14064-3 standard.

“While this might not be the only way to measure CO2, we think it is the best one,” Staffas said. “We are trying to force the industry to adopt a common way of measuring the CO2 footprint.”

This has led some of Boliden’s customers to enquire about how much embedded CO2 is in competitor zinc and copper products, ensuring the discussion spreads throughout the industry.

The obvious intention of devising such products is price, but Staffas said they also provide protection.

“When things get bad from an economical perspective, these products could really make a difference,” he said. “The customers might not pay extra for them, but if they scale down their purchases, our contracts should be the last to be cancelled.”

Staffas says Boliden is also aiming to add nickel and lead to its suite of low-carbon products in the future.

“Nickel is a special case for us as we don’t produce finished nickel; we produce a nickel matte,” he said. “We may team up with a refinery to make a joint product or do something else to ensure we can quantify the emissions according to our chosen protocols.

“Whichever way this development goes, we have to ensure we cover cradle-to-gate with these calculations otherwise it is not a true representation of the embedded carbon in that product.”

Electrification

While quantifying the carbon emissions of products is still relatively new in mining and smelting, Boliden has been using a carbon price in its internal technical studies and projections for close to a decade now.

It has been leveraging electrified sources of power for even longer. For instance, its Rönnskär copper smelter in Sweden has been using an electric oven since the 1990s.

More recently, the company has added trolley assist at Aitik and Kevitsa to this electrified base and employed ventilation on demand and heat exchangers at underground mines (the former) and smelters (the latter) to optimise its energy use.

It also has plans for underground trolley-battery haulage operation at its Rävliden (part of Kristineberg) project in Sweden through a project with Epiroc and ABB, while it is conducting a battery-electric vehicle loading trial at the Garpenberg mine, also in Sweden, with Sandvik. On the transport side, the company has recently teamed up with Scania to electrify part of its heavy-duty road transport in northern Sweden.

“It is one thing to review where we started; it is another to look at where we are going,” Staffas said on this topic. “We are planning to get better and better and go on to reduce our CO2 footprint further.”

On its way to achieving a goal of reducing its carbon dioxide intensity by 40% by 2030, the company is also looking at, among other levers, its use of explosives and cement: two key scope 3 inputs.

Staffas is confident Boliden can hit these ambitious goals by leveraging the innovation ecosystem within the Nordic region.

“For the CO2 journey we are now on, the Nordic mining cluster has and will continue to be very important,” he said. “We have big suppliers like Epiroc, Sandvik, Metso Outotec, ABB, Volvo and Scania on our doorstep. They have always worked closely with us, and we work closely with them on joint development projects.

“I think that is the main reason we are so far ahead of our competitors when it comes to our use of technology and innovation, and why we are confident in achieving our ambitious climate goals.”

LKAB to trial ‘first-of-its-kind’ Scania electric heavy tipper truck at Malmberget

An electric Scania Heavy Tipper truck is set to operate at LKAB’s iron ore mine in Malmberget, northern Sweden, alongside an electric crane truck specially adapted for these mining operations, giving Scania a chance to test and operate fully-electric trucks in a demanding underground mine environment.

The heavy tipper has a total weight including load of 49 t and will transport residual products, Scania said. The second truck is equipped with a crane, purpose-fit to transport drill steel to underground drill rigs. The electric truck with the crane will be charged at the depot, but mobile charging at the sites will also be possible to increase flexibility. The vehicles are expected to start operations at Malmberget during 2022.

Peter Gustavsson, Project Manager at LKAB, said the electric Scania trucks are part of an ambition to set a new standard for sustainable mining, where fossil-free solutions are used.

“We are shifting our fleet away from fossil diesel and as we are testing the capacity of battery-powered electric vehicles; decisions are taken with respect to the choice of trucks must not only contribute to higher productivity but, above all, also a more sustainable mine and a safer work environment.”

Fredrik Allard, Head of E-mobility, Scania, said: “We continue to work with customers that are willing to try innovative solutions together with us. For Scania it is very valuable to be able to test electric vehicles in the extreme environment in real customer operations in the mine. On top of that, the electric heavy tipper is the first of its kind in the industry and another really big step on the journey towards sustainable transport solutions across all applications.”

Gustavsson concluded: “Scania’s entry into our transformation process is valuable because it gives us the opportunity to evaluate their battery-powered vehicles. Together we hope to develop and build fossil-free vehicles that are as productive or even more so than the ones we currently have.”

Scania pictures the future of mine site haulage with AXL

In September, Scania joined Komatsu in announcing it had come up with a cabless automated haulage concept for mines and construction sites that, it said, was a significant step towards smart transport systems of the future.

Having the Scania modular system at the heart of the design, the first live demo of Scania AXL took place at TRATON GROUP’s Innovation Day on October 2, at Scania’s demo centre in Södertälje, Sweden.

Following this, IM spoke with Karin Hallstan, Head of Corporate Communications and PR at Scania, to find out a little more about the concept machine.

IM: Why have you decided to launch the AXL now? Why do you think the mining and construction markets are ready for such an innovation?

KH: Autonomous transport solutions, in different levels of technological sophistication, are already well established within the mining industry. Scania already has autonomous trucks in a customer operation (Rio Tinto at the Dampier salt operation in Western Australia).

Also, mines are like closed industrial areas and have trained professionals in command of operations meaning they are well suited for automation. Autonomous vehicles can also make mining operations safer for people employed within the sector.

The reveal of Scania AXL as a concept had to do with Scania having a good opportunity to showcase this in relation to other news we also have planned.

IM: The success of autonomous equipment on mine sites – in terms of boosting productivity, lowering costs, increasing utilisation, etc – has often been predicated on having robust network communications to relay information from the equipment. How will Scania ensure all its customers leverage the technology to its fullest without insisting on 4G/5G/LTE, etc networks.

KH: A certain communications infrastructure will need to be in place to ensure the onboard communications equipment work. Which type and with which capacity may vary.

IM: What payload is the initial concept vehicle? What range of payloads do you expect to cater for in the mining/construction sector?

KH: Scania AXL is based on a 8×4 donor vehicle with a 410 hp diesel engine (G410B8x4NA) running on biofuel HVO (Hydrotreated Vegetable Oil). However, since it is based on Scania’s modular approach, it can be equipped with any engine and wheel configuration available in the Scania modular system. The Scania AXL can load up to 40 tons using existing heavy-duty components.

IM: Based on this, what type of mining operations are you aiming to sell into (coal, iron ore, copper, etc)?

KH: It is important to note that this is a concept which we are building and piloting to primarily learn from in terms of the autonomous capabilities and removing the cab from a truck, rather than something with a set plan to commercialise. We believe that we will start in open-pit mines in this learning process. That said, Scania AXL is specifically constructed with a low tipper truck body that is suitable for underground tunnels with as little as 2.8 m headroom. Above ground, the truck body could be bigger.

IM: You mentioned that this is the first time the company has built a truck that has many new components and technologies – can you expand on what these are and what results you expect to achieve by incorporating them in the AXL design?

KH: The fact that there is no safety driver as backup has led to several innovations with regards to system integration and safety related processes and technical solutions. For example, the original electronic braking system has a ‘safe mode’ that hands control back to the (manual) driver which, in this case, doesn’t exist. Situations like these must be handled with redundancy.

IM: How does the automation system you have developed for the AXL differ to other solutions on the market? 

KH: We will comment on our own solutions, not necessarily on others’. What we can say about the automation system for Scania AXL is that the vehicle creates its own picture of its environment and performs its task based on its own view of whether the path/road is drivable and what the assignment is. It is not a solution for automated guidance by GPS-signals or where vehicles follow a loop in the ground.

IM: LiDAR appears to be a big part of the company’s design for the AXL. Has this LiDAR technology been transferred from another vehicle in the Scania range? Or, is it from another sector?

KH: Most of the sensors (radar, LiDAR, antennas and cameras) are, in essence, early prototypes at this stage and are not available in the existing Scania range.

IM: Where and when do you expect to trial the AXL first? What do you anticipate this trial involving (testing out the full capabilities, trialing the self-driving, loading the machine, etc)?

KH: We have trialled it in our own test facilities. If, and when, we work with a customer in a location outside our test environment, we will disclose this broadly publicly.

IM: When could the AXL be available commercially and, going back to a previous question, what payload class is this likely to be in?

KH: This is a concept and a pilot, so we are not commenting on commercial availability.