Tag Archives: Slavkaliy

Woodsmith Shaft Boring Roadheaders about to re-start cutting process

One of the most-watched shaft sinking projects in the sector right now is located in the UK, with the Woodsmith project in north Yorkshire having been on the radar for a number of reasons.

First off, it is a project that has changed hands recently.

Originally guided by Sirius Minerals, the 10 Mt/y project was acquired by Anglo American in 2020, a transaction that came with a fresh look at the whole project execution phase.

The change in ownership and re-assessment of plans drawn up by Sirius – a much smaller company guided by different investor pressures and operating procedures – led to Anglo American relieving DMC Mining, the lead shaft sinking contractor, of its duties.

Another reason for watching the project is the planned use of Shaft Boring Roadheader (SBR) technology from Herrenknecht.

After debuting at the Jansen potash project in Saskatchewan, Canada, where it excavated two 8-11 m diameter blind shafts down to circa-1,000-m-depth with the help of DMC as the contractor, SBR 2.0 – the second generation of the technology – was put to the test in Belarus at the Slavkaliy-owned Nezhinsky potash project. It ended up breaking shaft sinking records under the guidance of contractor Redpath Deilmann on a project to sink two 8-m diameter shafts (one to 750-m depth and one to 697-m depth).

Herrenknecht, with its experience in mechanised tunnelling, developed the SBR for the mechanised sinking of blind shafts in soft-to-medium rock. Based on the proven technology of the Herrenknecht Vertical Shaft Sinking Machine, the SBR offers improved safety performance compared with conventional shaft sinking methods while also achieving higher advance rates, according to the company.

The SBR is a 60-m tall, suspended shaft sinking machine, with 12 work decks and two service platforms. A telescopic, boom-mounted cutting head is used to precisely excavate rock via a partial-face cutting method. The cutting head works in a cycle, starting each cut from shaft centre to shaft wall, repeating until a layer of material is removed. Excavation proceeds in 1-m increments, followed by SBR lowering sequences.

The SBR was chosen for Woodsmith by Sirius over the conventional drill and blasting method due to its advantages in improving safety and schedule. This methodology, Sirius said, would allow the company to satisfy several operational objectives, moving away from the use of explosives and providing a safer, more predictable work method. Instead of a linear process, the SBR allows work to be completed concurrently as the shaft is sunk, as well as minimising damage to exposed host rock, and further improving safety while minimising downtime. Work decks above the cutting head allow workers to install shaft lining and tubbing as excavation continues, while a pneumatic mucking system removes waste rock.

The third generation of technology – which builds on the first two deployments with, among other things, the addition of two retractable robotic probes to test and grout the ground ahead for safer excavation and an additional control cabin on surface for more remote operation – is due to sink production and service shafts with 6.75-m diameters to depths of 1,594 m and 1,565 m, respectively, at Woodsmith based on the Sirius plan.

These SBRs are being supported by four triple sheaved winches from SMS SIEMAG and conveyors from Herrenknecht-owned H + E Logistik GmbH, among other support equipment.

Work on the service shaft commenced in 2021 with former Anglo American Chief Executive, Mark Cutifani, confirming in July of that year that the “first cut” with the SBR had taken place in the service shaft.

This progress was made while the company was still completing a detailed technical review on Woodsmith to ensure the technical and commercial integrity of the full scope of its design. This review has a particular focus on the sinking of the two main shafts, the development of the underground mining area, and the changes required to accommodate both increased production capacity and the more efficient and scalable mining method of using only continuous miners, Anglo American said.

Since the first cut was made in July 2021, however, Anglo American and Redpath Deilmann – which is now leading the sinking project as shaft sinking contractor – have been reviewing the existing plans for sinking with the SBRs, carrying out minor hardware changes on the machines and ensuring all staff have the appropriate training to facilitate the completion of the shaft sinking process. The Redpath Group is also involved in the drill-and-blast-based sinking for the materials transport system (MTS) shaft.

Various shaft sinking rates have been mooted in the past at Woodsmith, and Anglo American is currently working to develop the optimal solution for the facility based on technical standards.

The sinking at Woodsmith represents a different challenge to the two previous SBR projects conducted to this point.

For starters, there is no ground freezing expected to take place at Woodsmith – unlike what happened in Canada and Belarus. This process, while time consuming and only used to freeze unstable water-bearing strata around the shaft, can create more rock uniformity to aide consistent cutting rates.

There is also the MTS level to consider at Woodsmith, with plans to carry out lateral development work around the 360-m-level to join up the production shaft with this level where polyhalite ore will be transported along a 37-km tunnel to Wilton near the port. This means vertical cutting and loading may be halted while the MTS level connection is established.

All these factors, along with the performance of previous SBR work, will be incorporated into the engineering work Anglo American is carrying out at Woodsmith, but, in terms of the SBR, signs are that work on the service shaft could recommence shortly, with plans to start sinking in the production shaft by the end of the year.