Tag Archives: Sweden

AI lays groundwork for process control improvements at Boliden Aitik

A series of tests at Boliden’s Systems Technology division has indicated that artificial intelligence (AI) could unlock further gains from its productivity efforts at the Aitik copper mine, in Sweden.

The company, which partnered up with ABB for these tests, conducted the AI studies to see if technology is available today that could make its concentrators “self-learning,” it said.

The trial took place during the autumn and took a closer look at how AI could be used by Boliden to optimise its concentration processes.

Aitik, meanwhile, is in the middle of an expansion plan that will see production increase from 36 Mt/y to 45 Mt/y of copper ore starting in 2020.

Development Engineer and Project Manager, Johannes Sikström, explained: “At Systems Technology, we develop dynamic simulations of our processes. These simulations can be used in the same way as a game where we define what is a win and what is a loss.

“In the case of self-learning algorithms – so-called deep learning or reinforcement learning – the challenge is the great quantity of data necessary for the algorithm to learn enough about the system for it to make effective decisions.

“This is why games are such a major area within AI research. Games are well suited to enable algorithms to train themselves, and what constitutes a successful result – a win – is also well defined,” he said.

The simulation models enable the company to re-create data equivalent to several decades in just a few hours, according to Boliden.

In its previous projects, Boliden primarily researched machine-learning techniques that analyse data without allowing the algorithm itself to influence it. The aim of the latest project was to allow the algorithm to self-learn instead.

Following initial studies into suitable tools together with Anders Hedlund from data analysis firm BI Nordic, the project led to a degree project in a collaboration involving ABB and Boliden. Max Åstrand from ABB was appointed Supervisor, with his colleague Mattias Hallén taking the lead.

Sikström said: “We directed our attention to the grinding process in Aitik, where we have a well-developed simulation model. We wanted to see if AI was able to do better than our existing control strategy.

“Mattias did a fantastic job setting up the architecture and getting the various environments to ‘play ball’ with each other. We were then able to test various algorithms and different goal functions.”

To begin, Boliden tested a “Q-learning algorithm” which had a goal of trying to control the mill’s load within a given range. After around 40 attempts, the algorithm taught itself to do just that, according to Boliden, acknowledging that it solved the task using a method that would not work in the real world.

In the next step, Boliden investigated the ability of the algorithm to optimise a “gain” instead of optimising a process variable. The goal function for the gain was created as a theoretical model using metal prices, grinding and throughput, for example.

Sikström said: “With this goal function, the AI algorithm succeeded in beating our PID (project initiation documentation) structure to produce a greater gain. So-called wall time was around 80 hours before AI had learned to run the process profitably, in this case equivalent to a plant operating time of more than 300 years.

“The study highlights the value of simulations, and the AI technology shows exciting development opportunities for Boliden’s future process control.”

While the test results were positive, with AI performing better than Boliden’s current control method, Sikström said further studies were necessary before the company considers approaching a viable production solution.

He concluded: “Several technical details need to be resolved, and it is important to use accurate simulation models and well-defined goal functions.

“Because an algorithm is only able to solve the problems formulated for it, process knowhow and experience are at least as important in this type of development as classic process control.”

Boliden Kevitsa takes delivery of first EU-Stage-V-compliant Komatsu haul truck

Boliden has received the first haul trucks from Komatsu as part of its investment in a new truck fleet at its Kevitsa (Finland) and Aitik (Sweden) open-pit base metal operations.

The delivery marks the entry of Komatsu electric dump trucks into the European market, according to the miner.

For Kevitsa, 17 Komatsu 830E-5 haul trucks will be delivered until January of 2020, with nine Komatsu 930E-5 haul trucks being delivered to Aitik until April 2020.

The new trucks are the first EU Stage-V haul trucks within Boliden’s fleet, significantly reducing diesel exhaust emissions, the company said. They will also provide improvements in operator environment and safety, Boliden added.

The Komatsu 830E-5 haul trucks have a 220 t payload and will replace the current truck fleet at Kevitsa, reducing the mine’s production cost, Boliden said. To further increase efficiency and productivity, the trucks will be equipped with dispatch and maintenance systems from Modular Mining to enable optimised production and tracking as well as fleet maintenance support, the company said.

Boliden mentioned the purchase of trucks back in October during its September quarter results, saying it had reached agreement with Komatsu regarding an investment totalling some SEK 900 million ($96 million). At the time, the company said all of the trucks were equipped for future electrification; an important point considering the trolley assist trial ongoing at Aitik.

To mark the delivery milestone of the first truck, a handover ceremony was arranged in Kevitsa on July 10.

During the event, strategies and technical solutions were presented by executives such as Boliden President and CEO, Mikael Staffas, and Managing Director and CEO of Komatsu Europe, Masatoshi Morishita.

Mikael Staffas said: “This is an important step in the development of our open-pit mines while improving our environmental performance from an already strong position. This [is], not least, because we now create opportunities for increased electrification and related productivity development.”

Masatoshi Morishita says: “Today is a milestone for Komatsu Europe. With the delivery of first CE-certified Electric Dump Trucks to Boliden, Komatsu can offer a full line-up of mining products and solutions in Europe as well. We aim this will only be the start.”

The Electric Mine charges on to Sweden

Following the success of the inaugural Electric Mine event in Toronto, Canada, in April, International Mining Events has wasted no time in confirming the 2020 follow up; this time in Stockholm, Sweden.

Taking place at the Radisson Blu Waterfront Hotel on March 19-20, 2020, The Electric Mine 2020 will be even bigger, featuring new case studies from miners implementing electrification projects and presentations from the key OEMs and service suppliers shaping these solutions.

A leading hub in Europe for mining equipment and innovation, Sweden was the obvious choice for the 2020 edition of the event. Miners including Boliden and LKAB have already made electric moves above and below ground, and the north of the country is set to host Europe’s first home-grown gigafactory, the Northvolt Ett lithium-ion battery cell facility.

Sweden and Finland also play host to Europe’s major mining OEMs such as Epiroc, Sandvik, Metso and Outotec (soon to possibly be Metso Outotec Corp), and the Nordic region has a rich mining innovation legacy.

Capacity crowd

The announcement of the 2020 Electric Mine edition comes hot on the heels of a hugely successful debut in Toronto.

With the Radisson Admiral, on Toronto Harbourfront, filled out to capacity, the circa-150 attendees were treated to more than 20 world-class papers from miners Vale, Goldcorp (now Newmont Goldcorp), Kirkland Lake Gold, Boliden and Nouveau Monde Graphite; OEMs Epiroc, Sandvik, Caterpillar, Volvo CE and BELAZ; and equipment and service specialists Siemens, ABB, GE Transportation (a Wabtec company). Presentations from Doug Morrison (CEMI), Marcus Thomson (Norcat), David Sanguinetti (Global Mining Guidelines Group), Erik Isokangas (Mining3) and Ali Madiseh (University of British Columbia), meanwhile, provided the R&D angle delegates were after.

The event was a truly global affair, attracting delegates and exhibitors from Africa, Australasia, Europe, North America and South America, all eager to hear about developments across the sector.

Bigger and better

International Mining Events is upping the ante for 2020, increasing the event capacity to 200 delegates and making plans for a possible site visit to witness electric equipment in action.

Talks from several miners, as well as global international companies, will again underpin the 1.5-day conference program, which will also expand to cover the use of renewable/alternative energy within the field.

There will, again, be opportunities for sponsorship and exhibiting, with several companies already in discussions about booking the prime opportunities for the event.

If you would like to know more about The Electric Mine 2020, please feel free to contact Editorial Director, Paul Moore ([email protected]) or Editor, Dan Gleeson ([email protected]).

In the meantime, we look forward to seeing you in Stockholm!

Boliden, Ericsson and Telia celebrate world first 5G underground mine network deployment

SIMS project partners Boliden and Ericsson, together with Telia, say they have deployed the world’s first 5G network using New Radio in an operational underground mine, the Boliden Kankberg mine in Sweden.

The deployment comes less than a month since Telia and Luleå University of Technology, in Sweden, inaugurated a 5G-testbed as part of its Wireless Innovation Arena project.

The Kankberg mine is located around 10 km west of the Boliden Area Operations process plant in Boliden, and produces gold and tellurium. The mine has been in production since 2012 and has since then increased the annual production capacity to around 450,000 t. In 2018, the mine produced 456,979 t grading 4.4 g/t Au, 10.7 g/t Ag and 188.3 g/t Te.

SIMS, or Sustainable Intelligent Mining Systems, is part of the Horizon 2020 program, the biggest EU-backed research and innovation program ever with nearly €80 billion ($90.1 billion) of funding available over seven years (2014 to 2020).

“Productivity and safety requirements are very high in the mining industry. This customer configured network can function standalone, allowing mining operations to continue even if communication is disrupted to the mine,” SIMS said.

The 5G technology is superior to other communication solutions for connectivity in demanding environments like mining and manufacturing where continuous operations and close monitoring of processes are required, according to SIMS. With characteristics like very low response times and the option for local data handling, 5G is the best suited technology to meet the safety and efficiency requirements of the mine, it added.

Magnus Frodigh, Head of Ericsson Research, said: “5G is designed to support industry automation and industrial IoT and will be a platform for innovation in industries. The Boliden underground mine is a great example of a sector with tough requirements that will benefit immediately. [This technology]…will ensure connectivity for applications with high performance requirements.”

Magnus Leonhardt, Head of Strategy and Innovation at Telia, said: “Industry 4.0 is becoming a reality. This is another good example of how 5G can be used to build networks adapted to the customer’s operations. To guarantee safety in the mine, for example, the network must function even if communications to the outside world is disrupted. Reliable communications can now be secured with the network we have built.”

Peter Burman, Program Manager at Boliden, said: “We work actively with robotisation to improve productivity and safety in the mine which requires future proof communication solutions. 5G is an important component enabling advanced automation and by that, a safer and more sustainable mine.”

Boliden trials first automated electric drill at Aitik copper mine

Boliden says it has completed a world first with the trial of an autonomous electric Epiroc 351 Pit Viper drill at its Aitik copper mine in Sweden.

The trial ran through the month of March and was part of a three-year staged approach to autonomous drilling in Aitik that started in April 2017, Boliden said. The first part entailed tele-remote drilling, with the results from that setting the stage for stage two; a trial of single line autonomous drilling. “The third stage will evaluate the extent to which a whole pattern can be drilled with an electric autonomous drill,” Boliden said.

The drill, an Epiroc Pit Viper 351, is currently running successfully and achieving 30% increase in productivity compared with the manned equipment (190 m/d), according to Boliden. With the success of the project and positive feedback from the operators, a trial of autonomous drilling on two single passes (as opposed to multi-pass drilling) was expected to be performed shortly. There will also be a test performed with the soon to be commissioned LTE network in Aitik.

The KPIs were to be reviewed at a steering group meeting on May 7 when a decision was expected on whether to approve the investment to upgrade the remaining fleet, which could start as early as October. It is not yet known what the results were.

Shane Leighton, Senior Engineer Technology/Mine Automation at Boliden, said the trial represented a world first using an autonomous electric Pit Viper drill.

“There are a quite a few mines in the world running diesel-powered automated drills; this is the first automated electric 351 Pit Vipers. What we have learned from the trial in Aitik will support an upgrade to the 4 x 271 Pit Viper fleet in Kevitsa to an automated fleet that is scheduled to start in 2020,” Leighton said.

The trial must achieve a number of key performance indicators covering three different areas – safety, production and arctic weather conditions – to move onto a full investment. Currently, only single line drilling uses autonomous mode, the company said.

“Since we have never used this type of technology before, we wanted to be 100% certain that we could be successful before deciding to upgrade our entire fleet of Pit Vipers. The trial addresses that,” Leighton explained.

With regard to the safety, the same call-up procedures will apply when approaching the autonomous drill as for a manned drill. In addition, overview cameras mounted at various locations around the pit will allow the operator to gain a full overview of what is happening around the drill with four cameras located on the drills, Boliden said. A laser-based system for obstacle detection and a proximity detection solution are also new features designed to detect personnel; these will require staff to wear a tag that vibrates when entering the drill pattern.

The project team includes Boliden Project Manager Peter Palo, Niklas Johansson, representing the drillers, Shane Leighton from Technology, and Fredrik Lindstrom, Product Manager for Automation at Epiroc, Boliden’s supplier for the drills and technology. The project was partially funded by Boliden’s Mine Automation department.

Epiroc breaks ground at heat treatment facility for rock drills

Epiroc has held a groundbreaking ceremony for its new heat treatment plant for rock drills at one of its global manufacturing hubs in Örebro, Sweden.

With heat treatment an essential part of rock drill manufacturing, the top-modern plant – to be built through an expansion of the current workshop building – will further boost rock drill quality and performance, according to Epiroc. It will also lower customers’ total cost of ownership and enable higher production volumes, the company added.

Helena Hedblom, Epiroc’s Senior Executive Vice President Mining and Infrastructure, said: “The investment is a key step toward ensuring that this first-class manufacturing site remains as productive and competitive as possible for the long term.”

Production at the 1,400 m² heat treatment plant will be able to run 24 hours a day thanks to automation. It is expected to be up and running by late-2020.

Energy efficiency is a key focus for the design of the plant, with, for example, residual heat recycled internally to heat buildings.

Volvo CE staying connected to automation trend with 5G collaboration

As the application of automation in underground mines accelerates, several companies have started exploring 5G communications developments in order to handle the massive amounts of data that is being generated from autonomous equipment.

One company interested in exactly this is Volvo CE, which earlier this year, in co-operation with Telia and Ericsson, launched Sweden’s first 5G network for industrial use at its facility in Eskilstuna. The partnership could see the mining and construction equipment company become one of the first in the world to use 5G technology to test remote-controlled machines and autonomous solutions.

IM, as part of its annual focus on Nordic Suppliers (to be published in the June print issue), put some questions to Calle Skillsäter (pictured below), Volvo CE’s technical specialist for ‘Connected Machines’, to find out more about this collaboration and understand what hurdles companies are facing when trying to implement such communications solutions.

IM: What is the justification for investing in 5G technologies with Telia and Ericsson? How much of your equipment is currently controlled remotely or autonomously?

CS: Connectivity is a crucial enabler for automation, which is why this 5G project is so significant for us at Volvo CE and for the construction industry as a whole. We also believe that automation technology is at its most efficient when it is run hand in hand with electromobility – as we demonstrated through the Electric Site quarry project.

Thanks to a prior research collaboration with Telia and Ericsson, in the Pilot for Industrial Mobile Communication in Mining (PIMM) project, and now this established Telia Journey to 5G Partnership Program, we have the possibility to test future connectivity solutions for our machines in mining applications, as well as other potential applications.

Currently we are focusing on our L180H wheel loader remote-controlled prototype, but will soon test 5G on the HX2 concept (pictured above) autonomous hauler as well. There are no autonomous or tele-operated machines from Volvo CE available on the market today.

IM: Most of the 5G investment in mining has, so far, come from the Nordic region; why is this?

CS: That’s right, we do have a rather unique setup in that many Nordic companies are at the absolute forefront of their industries with this technology. Mining companies like Boliden and LKAB are driving the business to be more intelligent and automated, Ericsson & Telia bring the connectivity perspective, ABB bring their experience of automation into the process industry, and Volvo CE and Epiroc bring the machine perspective. It’s certainly the case that the Swedish engineering mindset is very open and collaborative, which is what you need to be if you are to explore the potential of new technologies and new ways of working. We are a small country and we need to collaborate and be on the edge of technology to stay competitive.

IM: Do you expect this region, in addition to Canada, to offer the most immediate potential for 5G automated and remote-controlled technologies in mining?

CS: As I’ve mentioned earlier, we have all ingredients available in the Nordics to succeed in this transformation towards more connected and automated mining solutions. Another strong reason is that we have high demands on health and safety for the people working in the mines. Automation is a key way to improve site safety and reduce the dangers and accidents associated with mining. In addition, automation is our key to staying ahead of our competitors.

IM: What testing have you so far been able to carry out at Eskilstuna? What results have been achieved?

CS: We quite recently inaugurated the new test area for automation and tele-operations, so we are still in the early phase. The initial focus is on the tele-operation of the remote-controlled wheel loader L180H, but we will very soon start testing 5G for the HX2 autonomous hauler concept machine. At the moment, it is too early to reveal any results.

IM: When do you expect to be able to test this out in a real-life underground mining environment?

CS: Tests have very recently been performed within the PIMM Digitalized Mining Arena (DMA) project in one of Boliden’s mines, using LTE wireless 4G communications, the results of which will be announced next month. Testing on a customer site with 5G is not planned yet.

IM: When comparing 5G to 4G technologies, what are the main benefits for mining companies when it comes to using this newer communication infrastructure (aside from lower latency, bandwidth, quality of service, positioning, etc)? What sort of impact could it have on operating costs considering the improved accuracy/responsiveness it brings to automated and remote-controlled operations?

CS: The main benefits are, as you say, lower latency, bandwidth and the quality of connection. But lower latency will also mean that tele-operated machines are more responsive, therefore resulting in much higher productivity. Higher bandwidth also means better video quality, which means a better work environment for the operator. Better video quality also creates a better feeling of presence, which helps to improve productivity. Quality of Service will mean machines are up and running for longer.

IM: How far is the industry away from employing these 5G solutions commercially? What are the three biggest hurdles to achieving this milestone?

CS: It’s too early to say when we think customers will be ready to see 5G solutions available commercially. But the biggest hurdles are:

  • Legislation related to the radio frequencies. There are still a number of open questions here; for example, will there be space for local industrial solutions, or will everything be dedicated to the mobile network operators?
  • Hardware availability. For example, there are not many 5G devices designed for demanding mining environments available right now on the market.
  • Business models. The new technologies will push us to review our business models. Should we continue to sell machines like we are used to?

IM: Do you expect underground mines of the future to be run solely off 5G networks? Or, do you expect a combination of 5G/Wi-Fi?

CS: There is a potential for mines to be run only on 5G in the future. But this is one of the questions that we hope to be able to answer in our coming tests and collaboration with our partners.

Volvo CE to acquire ‘construction and mining equipment adaptor’ CeDe Group

Volvo Construction Equipment is to acquire special application partner CeDe Group for an undisclosed sum, the Sweden-based company has said.

CeDe Group, based out of Malmo, Sweden, has a good reputation in the Nordic region as a low-volume adaptor of construction and mining machinery for special applications, according to Volvo CE. It has worked with several original equipment manufacturers (OEMs), including Volvo CE and its dealers, developing new bodies for haulers (eg fuel, water, waste), rail conversions for wheeled excavators, as well as conversions for underground mining applications.

The deal, which is expected to come into force by mid-March, will include CeDe’s intellectual property, operations, other assets and staff of around 45 full-time employees. As the annual volumes produced are relatively low, the deal will have no material effect on the income or financial position of Volvo CE, the company said.

Interestingly, CeDe, formed in 2000, can trace its roots back to Volvo’s original excavator business, Åkerman.

“Under Volvo CE ownership, the vision is that CeDe will remain an agile, entrepreneurial, standalone business,” Volvo CE said. “Volvo CE will make available its considerable competences to the company and add additional resources to allow it to expand its market reach and customer bases, becoming a European leader in this specialised field.”

A strengthened partner will also support Volvo CE’s objectives of expanding its product offering into new segments and applications, as well as providing a partner who can deliver low volume prototypes and production runs, Volvo CE said.The company will continue to provide and expand its engineering services to non-Volvo CE customers, it added.

Volvo CE President, Melker Jernberg, said: “This acquisition makes sense on a number of strategic levels. CeDe has already proven that it has a depth of engineering talent in adapting our machines for specialised applications. This closer relationship will allow Volvo CE to grow our product offerings while, at the same time, boosting CeDe’s ability to expand into new markets and segments, both with Volvo CE and its other OEM customers.”

CeDe Group’s Chief Executive, Krister Johnsson, said: “We are extremely pleased to be joining the Volvo CE family of companies. With our already long and good relationship with Volvo CE and deep understanding of its products, we are excited at the opportunities to develop our services and expand our reach into new markets.”

Talga and Schunk to work on graphene automotive applications

Talga Resources has signed a letter of intent (LoI) with a subsidiary of Germany-based Schunk Group to co-operate on the exploration and incorporation of Talga graphene (Talphene®) into a Schunk product with applications in the automotive sector.

The ASX-listed company said further details of the LoI and the application were commercial in confidence at this stage, but Talga has previously said Talphene could have potential as a functionalised graphene additive for lithium-ion battery cathodes, in addition to applications in packaging, concrete and composite materials.

Talga has 100% ownership of multiple high-grade graphite assets in northern Sweden, the most advanced of which (Vittangi – containing the Nunasvaara deposit) hosts the world’s highest grade JORC/NI 43-101 graphite mineral resource (12.3 Mt at 25.5% graphite), according to the company.

Talga Managing Director, Mark Thompson, said: “Talga is excited to be working with such a globally active and innovative carbon product manufacturer as Schunk on an application using Talga’s graphene. We look forward to leveraging our technology and products towards success of this program and potential development in future.”

Shunk offers a broad spectrum of products and services in the fields of carbon technology and ceramics, environmental simulation and air conditioning, sintered metal and ultrasonic welding.

Last year, Talga said it was targeting completion of a prefeasibility study on Vittangi at the end of the March quarter.

LKAB takes to the skies to find new orebodies around Kiruna

LKAB, in tandem with representatives from the University of Münster (Germany) and Luleå University of Technology, LTU (Sweden), recently flew a helicopter-borne survey system, around 90 m above the ground, around its Kiruna area in northern Sweden.

The process works where a helicopter flies past 90 m above the ground with a survey instrument in tow. During a week in October, the helicopter flew in the Luossavaara area near Kurravaaravägen in and around the Varggropen/Nukutus outdoor leisure area and Lake Tuollujärvi.

LKAB said: “The method is unique and was conducted as a research study – one that can help safeguard LKAB’s future.”

The area surveyed was around 40 km², but two weeks preparation was necessary before flying could begin. First, a 2 km cable was laid out in various places in the terrain. Iron digging bars for conducting electrical current into the earth were attached to each end of the cable.

Niklas Juhojuntti, Geophysicist at LKAB, said: “It creates an electromagnetic wave that emits a signal that penetrates the ground. The signal is captured by sensors in the survey instrument suspended beneath the aircraft.”

Based on the aircraft test results, the project group in Germany will put together a 3D model which could reach down to a depth of around 1 km. The survey results will show if there are any electrical conductors, which could indicate the presence of an orebody.

“If this is the case, we will have to drill to find out more precisely what it is. Magnetite is a great conductor,” says Juhojuntti.

LKAB anticipates the results from the aerial survey in January or February 2019 at the earliest. Scientists from LTU will also compile the results from surveys carried out on the surface.

“By piecing together all of the results, we can gain a better picture. From what we’ve seen so far, all the survey data looks good and provided a clear signal,” says Juhojuntti.

LKAB took responsibility for certain parts of the logistics in Kiruna, but the research project paid for the surveys.

“They wanted to demonstrate that there survey methods work, and now they’ve been able to fly in an area where we know mineralisation is present,” Juhojuntti said.

“In Germany, it’s not as easy to find areas like this, and nor is everyone there quite as well disposed toward this method. They were extremely pleased with the Kiruna residents, who left their equipment well alone. They enjoyed a great reception by the people out in the field.”

The results from the flights can help LKAB in its hunt for new orebodies and create a more secure future, the company says.

“I’m hoping this method will allow us to detect any indications concerning unknown major orebodies at depth. We still haven’t done much work at depth north of Nukutus,” Juhojuntti says.