OZ Minerals has committed funds to support in-situ recovery (ISR) research at the Kapunda copper-gold ISR project in South Australia, putting the project owners closer to outlining the potential economic extraction of copper resources via ISR.
Kapunda is being steered by EnviroCopper Ltd, which, itself, has a joint venture in place with tenement holder Terramin to earn up to a 75% interest in the mineral rights over metals which may be recovered via ISR.
As part of the agreement with OZ Minerals, the company has committed to A$2.5 million ($1.75 million) over 18 months to support ISR research at the Kapunda project, according to Thor Mining, which as a 30% interest in EnviroCopper.
This funding will continue studies into the potential economic extraction of copper resources via ISR, with collaboration between the two companies kicking off this quarter.
EnviroCopper plans to develop a Mining Lease application for the Kapunda project, which, from 2018-2021, was subject to extensive research into solving existing knowledge gaps in the ISR industry. Funded by a Cooperative Research Centres (CRC) Program Grant from the Dept of Industry, Innovation and Science to the total value of A$6 million (cash and in-kind), EnviroCopper partnered with industry, CSIRO and University of Adelaide to carry out this work.
The key objective was to research the core values of environmental, social and economic impacts of ISR mining, a proven method of metal recovery that has been used for over 50 years and, with recent technological improvements, is being considered for the recovery of metals like gold and copper from mineral deposits that can not be mined by conventional methods.
Kapunda is a town with a rich mining history, growing from Australia’s first ever commercial copper mine in the 1840s. Even though the mine ceased production in the early 1900s, successive mining companies have looked at recovering the remaining copper over time, but, due to the proximity to town, conventional mining would not be possible. ISR mining is a possible solution to extracting this remaining copper in an environmentally- and community-sensitive manner.