Tag Archives: University of Technology Sydney

NextOre’s in-pit sorting advances continue with development of mining truck sensor

NextOre and its magnetic resonance (MR) technology have made another advance in the ore sorting and material classification game with the development of a new “open geometry” sensor that could enable mines to scan mining truck loads.

The company, in the last year, has surpassed previous throughput highs using its on-conveyor belt solutions, accelerated the decision-making process associated with material sorting viability with its mobile bulk sorter and made strides to branch out into the in-pit sorting space via the development of these open geometry sensors.

NextOre’s MR technology is the culmination of decades of research and development by the Commonwealth Scientific and Industrial Research Organisation (CSIRO), with the division spun out from the organisation in 2017. Since then, NextOre has gone on to demonstrate the technology’s viability across the globe.

NextOre’s MR analysers were first fitted on conveyor belts, yet interest in solutions for in-pit equipment predates the company’s inception.

“A significant portion of the time when CSIRO would show people the technology, they were working on for fitting on a conveyor belt, many would ask: ‘could you possibly put it around a truck somehow?’,” Chris Beal, CEO of NextOre, told IM.

After workshopping many ideas and developing increasingly large prototypes – commencing at the start with an antenna made up from a copper loop and a couple of capacitors – two in-pit solutions leveraging CSIRO’s open-geometry sensor have come to the fore.

The first – a 3-m-wide sensor – underwent static and dynamic tests using chalcopyrite copper ore grade samples in a material feeder setup in 2022, in Australia.

This test work, observed by several major mining companies, laid the groundwork for a bigger installation – a 7-m-wide ruggedised antenna that weighs about 5 t. This can be positioned over a haul truck and manoeuvred using a crane supplied by Eilbeck and guidance systems developed for NextOre by CSIRO and the University of Technology Sydney.

The advantage of MR in a truck load scanning scenario, just as with a conveyor, is the ability to make accurate, whole-of-sample grade measurements at high speeds. Yet, to operate effectively, this system requires significant amounts of power.

“The truck system we are building is between 120 kW and 200 kW,” Beal said. “For people in the radio frequency space, power of that magnitude is hard to comprehend; they’re used to dealing with solutions to power mobile phones.”

For reference, a NextOre on-conveyor system rated up to 5,000 t/h has around 30 kW of installed power. And conveyor systems above 5,000 t/h have 60 kW of installed power.

The idea is that this new MR truck sensor station would be positioned at an ex-pit scanning station to the side of the main haul road at a site and trucks will be directed to ore or waste as a result. The test rig constructed in NextOre’s facility has been built to suit the truck class of the initial customer, which is a major copper mine using 180-t-class and 140-t-class haul trucks.

The first prototype has now been built (as can be seen by the photo) and is awaiting of shipment to the mine where a one-year trial is set to commence.

While pursuing this development, NextOre has also been increasing the scale of its conveyor-based installations.

Around nine months ago, IM reported on a 2,800 t/h MR ore sorting installation at First Quantum Minerals’ Kansanshi copper mine in Zambia, which had just shifted from sensing to sorting with the commissioning of diversion hardware.

Now the company has an ore sensing installation up and running in Chile that has a capacity of 6,500 t/h – a little over 50% higher than the highest sensing rate (4,300 t/h) previously demonstrated by the company at Newcrest’s Cadia East mine in New South Wales, Australia.

Beal said the unit has been up and running since December, with the copper-focused client very happy with the results.

For those companies looking to test the waters of ore sorting and sensing, another big development coming out of NextOre in recent years has been the construction of a mobile bulk sorter.

Able to sort 100-400 t/h of material on a 900-mm-width conveyor belt while running at 0.3-1 m/s, these units – one of which has been operated in Australia – is able to compress the timeline normally associated with making a business case for ore sorting.

“As people can now hire such a machine, they are finding it either resolves a gap in proving out the technology or it can be used to solve urgent issues by providing an alternative source of process feed from historical dumps,” Beal said. “They want to bring a unit to site and, after an initial configuration period, get immediate results at what is a significant scale.”

Such testing has already taken place at Aeris Resources’ Tritton copper operations in New South Wales, where the unit took material on the first surface stockpile taken from an underground mine.

While this initial trial did not deliver the rejection rate anticipated by Aeris – due largely to rehandling of the material and, therefore, a reduction in ore heterogeneity ahead of feeding the conveyor – Aeris remains enthusiastic about the technology and Beal is expecting this unit to be redeployed shortly.

“We now know thanks to results from Kansanshi, Carmen Copper Corp/CD Processing, this new Chilean site and Cozamin (owned by Capstone Copper) that this in-situ grade variability can be preserved, and that mixing impacts directly on sorting performance,” Beal said. “Even so, we have seen really good heterogeneity persist in spite of the unavoidable levels of mixing inherent in mining.”

He concluded: “People want this type of equipment not in a year’s time, but next month. Capitalising the business to put more mobile units out in the world is a priority.”

FBICRC’s battery value chain plans accelerate with cathode precursor pilot plant launch

The Future Battery Industries Cooperative Research Centre (FBICRC) has launched its flagship project – the Cathode Precursor Production Pilot Plant – in Western Australia.

Backed by 19 industry, research and government participants, the launch represents a major step in Australia’s journey to expand its presence throughout the global battery value chain, it said.

The first of its kind in Australia, the Cathode Precursor Production Pilot Plant will establish the technology and capabilities for Australia to design and build cathode precursor manufacturing facilities on a commercial and industrial scale.

The FBICRC explained: “Cathode precursors are precisely engineered materials, the highest cost component of a cell, and a crucial element of the battery value chain. The FBICRC’s report – ‘Future Charge – Building Australia’s Battery Industries’ – identified establishing an active materials manufacturing capability as an immediate priority for Australia to move up the global value chain, which could deliver A$1 billion ($672 million) to the economy and support 4,800 jobs by 2030.”

The Cathode Precursor Production Pilot Plant capitalises on Australia’s strong position in mining and its emerging battery metal refining industry. The facility will link with other FBICRC flagship projects across Australia, including the National Battery Testing Centre at the Queensland University of Technology, battery materials research at the University of Technology Sydney, electrolyte research at Deakin University and battery anode research at the University of Melbourne.

Shannon O’Rourke, CEO of the FBICRC, said: “The launch of the Cathode Precursor Production Pilot Plant is the culmination of several years of hard work, collaboration and integration by industry-leading partners and academic institutions, to progress the current and future needs of industry. We’re delighted to see this world-class facility up and running.

“The incoming government has committed to a National Battery Strategy which will help to seize local battery manufacturing opportunities. The Cathode Precursor Production Pilot Plant will be a key enabler to build an Australian manufacturing capability.”

The global battery market is expected to grow 9-10 times by 2030 and 40-fold by 2050. In a net-zero world, between now and 2050 over A$23 trillion will be spent on batteries, according to the FBICRC. Australia is positioned to capture more of this value given it has leading resources of all raw materials required to make high performance batteries – nickel, cobalt, manganese, graphite and lithium.

Cathode precursor materials are further processed to create cathodes in the battery cell. The performance, durability, safety, and operating envelope of a cell are impacted by the properties of precursor materials. Composition, shape, and surface properties must be controlled closely to ensure a cell performs reliably over many years.

Over 18-months, the plant will run a series of test campaigns through four fully integrated and automated P-CAM production units, provided by BASF. The four units will enable the Cathode Precursor Production Pilot Plant to run different compositions and ratios of chemistries simultaneously, or to run the same chemistries under four different conditions, changing variables such as temperature, pH or stirring rate. Produced P-CAM is then lithiated, calcined and electrochemically tested at the FBICRC-funded Electrochemical Testing Facility at the Queensland University of Technology.

BHP Nickel West has also provided equipment for the precursor facility, repurposed from its nickel sulphate pilot plant.

The Cathode Precursor Production Pilot Plant will not only deliver the technical capabilities required to build commercial scale P-CAM manufacturing facilities, it will help educate and upskill the next generation for a future battery industry, it said.

O’Rourke concluded: “Australia has the potential to develop into a competitive player in the international batteries industry. The Pilot Plant launch is a significant step in developing the on-shore capabilities and industry knowledge to create thousands of jobs and add billions of dollars to our economy.”

Jessica Farrell, Asset President, Nickel West, said: “The launch of the Cathode Precursor Pilot Plant is a vital step towards developing a future growth industry here in Western Australia. The launch of this plant, made possible through the repurposing of equipment from our nickel sulphate pilot plant, will allow the FBICRC and the State Government to explore further options for a downstream battery materials manufacturing industry. This is another exciting step for BHP as a major supplier of nickel, a commodity highly sought after by car and battery manufactures across the globe.”

Project participants include: BASF Australia Limited, BHP Nickel West, Queensland University of Technology, Curtin University, CSIRO, Minerals Research Institute of Western Australia, University of Technology Sydney, HEC Group Pty Ltd, JordProxa Pty Ltd, Ardea Resources Limited, IGO Limited, Blackstone Minerals Limited, Cobalt Blue Holdings Limited, Calix Limited, Alpha HPA Limited, Lycopodium Limited, ChemX Materials Limited, EV Metals Group PLC and Allkem Ltd (formerly Galaxy Resources Limited).