Tag Archives: wireless initiation

Orica setting digital groundwork to open up new mining frontiers

The integration of a digital backbone into the explosives, blasting and related processes will continue to result in miners accessing new deposits and potentially developing new mining methods, Orica’s Angus Melbourne and Rajkumar Mathiravedu told IM at last month’s MINExpo 2024 in Las Vegas.

Reflecting on a digitalisation journey that started eight years ago, Melbourne – Orica’s Chief Technology Officer – said the original ambition was about taking a very manual process like blasting and digitising the workflows.

“Essentially what we wanted to do was anchor into the design and connect the on-bench activities for a verification process as to where the drill pattern was and how this reconciled with the actual outcome,” he said. “The key was always to link this back to the hub of the machine.”

Bringing data and insights into this equation resulted in better placement of energy (ie explosives), which has since become part and parcel of Orica’s aim of “mobilising the Earth’s resources in a sustainable way”.

The second element underlying this digitised push was the acceleration of automation.

“You cannot automate unless you have a digital foundation,” Melbourne said.

This led to the company – both organically and through M&A – building up a suite of software, sensors and data science applications to enable processes within the explosives and blasting process to be automated.

Just what processes to automate has always been dictated by safety and productivity.

“Getting people off the bench, face, voids, high walls, etc becomes a clear motivator for automating certain processes,” Melbourne said. “It is a bit more difficult on the productivity side of things; you have to be generating value, not just automating for the sake of it.”

From Orica’s initial point eight years ago, the company has progressively moved into adjacencies such as post-blast outcomes, geology and more, bringing the same mindset to each part of this distinct process, while integrating it into the wider work patterns.

Mathiravedu (Orica Digital Solutions Senior Vice President) explained: “What we are seeing in the digital space is the fact that, with blasting, you can either create or destroy value. With all the tools and expertise we have, plus the ability to connect the physical and digital components, we are making the whole process more productive, as well as optimising the use of consumables like water and energy.”

Rajkumar Mathiravedu presenting Next Gen SHOTPlus at MINExpo 2024

And as Orica has opened further to the wider mining ecosystem – think of recent tie ups with Epiroc on the Avatel™ semi-autonomous explosives loading solution showcased at MINExpo or Caterpillar on a potential integration between Rhino™, BlastIQ™ and FRAGTrack™ technologies with Cat® MineStar™ Terrain – its influence across the whole flowsheet continues to expand.

Melbourne said: “If I go back a decade, Orica would have been doing a lot of these things itself…but both Raj and I have worked in other industries that, for various reasons, were collaborative. As a result, we were far more open to working with others.”

This openness is seen with one of Orica Digital Solutions’ latest launch, Next Gen SHOTPlus™, which unlocks the power of the Model Through Time; a cloud hosted, spatiotemporal, digital replica, Orica says. Incorporating the proprietary physics engine, Helfire Damage Model and Advanced Vibration Management solution, Next Gen SHOTPlus enables drill and blast engineers to model and predict blast movement, damage and vibration.

Predictive blast movement modelling is enabled by Predict Physics Engine, allowing engineers to understand the impact of decisions on the post-blast muck pile. The Blast Damage, meanwhile, feature provides 3D damage modelling, allowing engineers to evaluate the predicted damage generated on both blasted and in-situ rock masses.

As the Avatel system loomed over the Orica booth at MINExpo (it was on the adjacent Epiroc stand, see below), it seemed only right to ask about the potential to fully automate the explosives loading process based on the safety and productivity drivers Melbourne outlined.

“The goal is to go fully autonomous,” he replied. “If you look at the safety and productivity drivers, semi-automation advances both of those, but there are opportunities to improve upon both – we are clearly still underground at the moment, which comes with risk, and there are other elements of cleaning, priming and loading that could be accelerated in the development headings through full automation.”

One of the underlying technologies of the Avatel platform is the WebGen™ wireless initiation system, which has been key to unlocking new mining methods and techniques, with numerous case studies detailing a strong value case.

A fully autonomous Avatel unit could do similar, according to Melbourne, ticking that productivity box.

“With full autonomy, you can start to employ new mining methods and go to different parts of the mine you couldn’t previously,” he said. “On a case-by-case basis, you can look at individual mines where they understand the mineralisation that, because of safety constraints, cannot currently be classified as a resource or reserve.

“If we’re able to remove that constraint, we can start to tangibly assess bringing that into a resource or reserve and mining that.”

Orica to unveil WebGen 200 wireless blasting initiating system at MINExpo 2021

Orica says it will unveil its latest through-the-earth, fully wireless initiating system, WebGen™ 200 at MINExpo 2021 in Las Vegas next week.

A development based on more than 2,300 successful WebGen 100 blasts around the world, specifically in underground mines, Orica’s WebGen 200 technology has been designed with customers’ needs and feedback built-in as they look to further improve safety and productivity across their operations, the company says.

WebGen technology provides for groups of in-hole primers to be wirelessly initiated by a firing command that communicates through hundreds of metres of rock, water and air. This completely removes constraints often imposed by the requirement of a physical connection to each primer in a blast and importantly allows the removal of people from harm’s way, it says.

“Engineered to deliver market-leading safety and reliability, WebGen 200 has been built with enhanced capabilities, security and versatility, ensuring it meets the extreme mining conditions faced by surface and underground customers pushing the boundaries of mining’s next frontier,” Orica says.

MINExpo 2021 will take place on September 13-15 at the Las Vegas Convention Center.

Orica Chief Technology Officer, Angus Melbourne said: “We know that as our customers go deeper and move into more complex mining, they are requiring more advanced technology to help them mine differently and continue to extract their orebodies safely and efficiently. That’s where WebGen 200 and our broader technology roadmap comes in.”

WebGen 200 harnesses digital technology to allow advanced features including digital inventory management, delay adjustments before blasting, an improved user interface and increased quality assurance, according to the company. Reliability is further improved with the WebGen 200 primers available to endure even greater dynamic pressure.

Orica Vice President – Blasting Technology, Adam Mooney, said: “We’ve co-developed our second-generation wireless initiation technology, WebGen 200, with customers from across all segments and regions around the world.

“We developed WebGen primarily to reduce or remove employees’ exposure to hazardous environments and improve overall operational safety. But we are also seeing the technology delivering unparalleled improvements in productivity and improved recovery for our customers – it is enabling a step-change in blasting and mining like no other.

“We are excited about what the future holds for the industry with WebGen 200 and know the enhancements made to this second-generation product will improve the customer experience, broaden its application and deliver significant value for customers while enabling the first stages of blast automation.”

The hardware, software and the WebGen 200 units come together as a system that, Orica says, is easily integrated into any operation. It will be available in four product variants and include a wider range of booster weights, opening up new segments, applications and opportunities in both surface and underground mining.

The complete product range now includes the WebGen 200 Surface, WebGen 200 Surface Pro, WebGen 200 Underground Pro, and WebGen 200 Dev. All four variants will be on show in Las Vegas.

The new WebGen 200 suite of fully wireless initiating systems

WebGen 200 Surface and WebGen 200 Surface Pro are specifically designed for surface mining applications, with the Pro version designed for extreme blasting conditions, including revolutionary blasting techniques like Multi-Stratum Blasting, Mining Schedule Flexibility and Lightning Risk Reduction. The WebGen 200 Underground Pro is suited to production blasting, while the WebGen 200 Underground Dev has been designed for mechanical assembly and will enable the automation of underground development charging with Avatel™.

Orica and Epiroc have been developed Avatel, billed as a first-of-its-kind, industry-driven semi-automated explosives delivery system, with a prototype machine currently undergoing trials ahead of being commercially ready by the end of 2021.

The charging solution, enabled by Orica’s WebGen wireless initiating system technology, addresses the final step in the underground development cycle yet to benefit substantially from mechanisation and automation.

It is expected to bring a step-change in safety by eliminating the need for wired connections and subsequent exposure to crews at the face, according to Orica. Instead, the entire charging cycle can be completed by a single operator from within the safety of an enclosed cabin, several metres from the face.

The WebGen 200 development program is progressing to plan with comprehensive verification and validation product testing completed, according to Orica. Field trials are planned and will be completed across multiple mining segments and regions in Australia, Canada, Latin America and Europe, ahead of being commercially available from December 2021.

Newmont’s Canada mines hit wireless initiation milestone with Oricas WebGen

Newmont has continued to leverage the benefits of fully wireless initiation in its blasting process, having initiated its 500th blast using Orica’s WebGen™ system at its Canada mines.

The milestone was achieved at three of its underground mines in Canada, which are blasting with WebGen. Each site uses different mining methods, and all have achieved improved performance and safety in their overall mining processes with the implementation of innovative WebGen-enabled mining techniques, Orica says.

“The key to Newmont’s success was its ability to think differently and to take advantage of pre-charging with ‘no strings attached’,” the company added. “Eliminating the physical connections to each blasthole and the need for re-entry allowed the blasting sequence to be arranged for optimised outcomes.”

The blasting process changes help mines deliver significantly improved ore recovery and has simultaneously reduced interactions, cycle times and rework, according to Orica. WebGen wireless blasting technology is an innovation that enables process change unlike any other, by pre-charging blasts and firing blasts after access to the area is lost, it claimed.

Newmont’s WebGen journey started at the Musselwhite mine in late 2016 following Orica’s launch of the first-generation wireless initiation system, WebGen 100. The Orica technical team identified an opportunity to use the new technology and approached the Musselwhite team with a new concept, the “Temporary Rib Pillar (TRP) Avoca Mining” method.

Over the following months, workshops, detailed design reviews, risk assessments, crew meetings and signal surveys were completed and the first TRP stope was designed and ready to be blasted.

The initial stope was drilled and loaded in November and December 2016 and fired in January 2017.

Over the next year, the Musselwhite and Orica teams continued to use and refine the TRP method.

“As confidence in WebGen 100 increased, the teams explored other opportunities where wireless blast initiation could significantly improve safety and stope performance,” Orica said. “Several other wireless enabled mining methods were developed and evaluated through these collaborative efforts throughout 2017 and 2018.”

The results so far from the WebGen collaboration include a 20% reduction in mucking time, 14% improvement in production tonnes per day and 34% reduction in ore dilution.

Following the success of Musselwhite gold mine, the team from Éléonore Mine approached Orica in late 2018 to explore the possibilities of implementing the WebGen system on-site. The team conducted a two-day face-to-face workshop where the technical and operations teams from Éléonore and Orica met and conducted an in-depth review of Éléonore’s production mining operations.

The workshop ended with a commitment to complete a joint wireless blasting optimisation project, Orica said.

“A project charter was developed, which involved a detailed 10-stope evaluation across various geometries with the primary goal to improving stope recovery,” the company explained.

“Preparation started in early 2019 with detailed design sessions, signal surveys, risk assessments and crew information sessions.”

The first stope blast was loaded in February 2019 and fired in March. The project’s scope was completed by late summer and the project delivered and exceeded all the agreed performance metrics, according to Orica.

Sill pillars at Éléonore represent a challenge for both ground control and drill and blast teams.

“WebGen technology allowed us to safely and efficiently recover side-drilled stopes by greatly reducing worker exposure and stope cycle time,” Ugo Marceau, Drill & Blast Engineer at Newmont Éléonore, said.

Results from the WebGen introduction at Éléonore include an 86% increase in ore recovery, 72% reduction in stope time and 71% increase in drilling rates.

While the Éléonore project was underway, teams from Borden and Orica had already “white boarded” various wireless enhanced stoping scenarios to increase mining efficiency in Borden’s complex geometry.

“The main goals were eliminating as much lateral development and cemented rock fill as possible while maximising ore recovery,” Orica explained. “As with both Musselwhite and Éléonore, signal surveys, risk assessments and crew information sessions were completed to prepare the first stope.”

Borden’s first stope was loaded in early April and fired later that month. Once again, the outcomes from using WebGen exceeded those expected from a conventional approach, according to Orica.

Eric Fournier, Mine Engineering Supervisor at Newmont Borden, said: “Orica have been partners with us from the very beginning. The WebGen team is very professional, knowledgeable, and easy to work with. The technology is great but the people behind it make it happen. WebGen technology allows us to be a safer and a more efficient mine. It removes the need to send people around hazardous conditions that exist after a blast.”

Results from the Borden implementation include 98% actual ore recovery and 17% actual dilution.

Orica concluded: “Wireless-enhanced production mining has been expanded across these three Newmont mines. The WebGen system has proven itself as a reliable initiation system and enables drill and blast engineers to modify existing mining methods for substantial improvements in safety, productivity and cost reduction. This has been an exceptional journey together with Newmont and highlights the results that can be achieved through innovation and collaboration.”