Tag Archives: Zambia

First Quantum Minerals and FLANDERS sign agreement for drill fleet autonomy

First Quantum Minerals Ltd (FQM) and blasthole drill fleet autonomy company FLANDERS Electric have entered into an agreement to collaborate on advancing autonomous drilling solutions across FQM’s mining operations.

The first roll-out of FLANDERS’s ARDVARC® system is scheduled for FMQ’s Zambian operation.

The OEM-agnostic retrofit solution under ARDVARC enables autonomous functionality on electric or diesel blasthole drills, including full pattern autonomy with cable reeler automation.

The initial project is set to launch at FQM’s Sentinel mine, where FLANDERS’s autonomy technology will be implemented and optimised. The ARDVARC autonomous solution will extend to the complete drill fleet at Sentinel and further expand to new drill fleets on the S3 expansion project at FQM’s Kansanshi mine. This rollout will involve a total of 20 drills across FQM’s Zambian operations.

FQM’s Lead – Group Mine Technology, Clayton Sanders (pictured in the centre), said: “Our collaboration with FLANDERS aligns with our commitment to innovation and operational excellence. By pioneering autonomous drill technology at Sentinel, we are improving mining efficiency through precision blasthole drilling, reducing inaccuracy and wastage. We are excited about the upskilling and development opportunities this will create for our frontline employees and technical staff, which will put them at the forefront of the modern mining industry whilst enhancing their safety and productivity.”

FLANDERS Executive Chairman, John Oliver (pictured far left), added: “As the only provider offering an aftermarket retrofit for multi-brand drill autonomy with our cutting edge ARDVARC solutions, FLANDERS is excited to support FQM’s strategic goals for drill fleet automation. This partnership reflects our dedication to delivering reliable, scalable autonomous solutions that meet the evolving needs of the mining industry.”

The first phase of fully autonomous operations at Sentinel is expected to go live in the March quarter of 2025. The rollout will continue over the following months, gradually equipping the entire fleet for autonomous drilling.

FLS evolving regional strategy to better serve EMEA region

Supporting mining in achieving its energy, water and emissions reduction goals, FLS says it is evolving its regional strategy for even greater impact.

Mining customers are to benefit from the stronger regional capability being developed by FLS, which is making the company even more responsive to customer needs, the OEM says.

This is one of the key outcomes of the company’s strategic evolution underway, according to Bernard Kaninda, newly appointed FLS President Sales and Service for Europe, Middle East and Africa (EMEA). As a leading full flow sheet technology company, FLS occupies a distinctive place in the market, he says, giving it a special relationship with customers.

“Being a partner through all their mineral processing requirements, FLS walks with customers throughout the lifecycle of a comprehensive range of equipment and solutions,” he says. “This engagement gives us greater impact in helping the mining industry achieve its sustainability goals.”

FLS aligns itself with industry imperatives by committing to energy and water reduction targets, and committing to reach zero emissions by 2030. To achieve these goals, Kaninda says, it was imperative to further grow the region’s capability – shifting from the previous regional definition which comprised sub-Saharan Africa, Middle East and Southern Asia to a more cohesive EMEA region.

“We believe the move to an EMEA region will better create the capabilities we are looking for, combining the strengths of Africa and Europe, and our learnings in the Middle East,” Kaninda explains. “We expect to be able to respond more quickly with services, spares and equipment, and are building local resources to achieve these improvements.”

The focus on communication and partnership is being fostered through clusters within the region, which are empowered with adequate resources for quick response times and effective support for end-users.

“As a partner that tailor-makes solutions for our customers, we go further by guaranteeing the performance of that equipment,” Kaninda says. “This means being able to respond effectively as and when the situation demands, so we need to be in close proximity to the customers’ sites – and very familiar with the conditions they experience.”

The clusters in Africa ensure a strong presence in Southern African countries – including South Africa, Zambia and the Democratic Republic of the Congo – as well as West Africa and North Africa. These are areas where FLS already has a significant footprint of equipment in operation.

“The mining sector is dynamic, however, so we are constantly expanding our equipment footprint and will be establishing a presence wherever we have a significant installed base,” Kaninda says. “It has always been a matter of pride for us that FLS customers will receive the same close attention irrespective of where they are around the globe.”

Streamlined logistics are an important aspect of the strategic shift, which will reduce delivery times through better availability of inventory in-country. Teams in the clusters will also facilitate faster access to service and parts.

“We are also committed to the communities in the regions where we operate, and are increasing our local employment as we develop our presence in different countries – especially in Africa,” Kaninda says. “We believe in building local capability and this is visible in our teams, in which 90-100% of staff are already local in the various clusters.”

These teams are supported by specialised training provided by facilities such as the FLS Training Academy at the Chloorkop service centre in South Africa. This well-equipped regional training hub underpins ongoing skills transfer to build the company’s skills base and succession pipeline, he says, ensuring all customers receive the same FLS experience. So successful is Chloorkop’s model of combining technical services with training, that the company plans to replicate such a facility in the Middle East.

“This will allow us to upskill youth and enhance our positive economic and social impact on the community,” he explains. “There is no reason why we shouldn’t even look at another such centre in Africa, as there is growing demand for artisans and other specialised skills.”

Africa remains vital as a provider of mineral resources for the transition to a lower carbon future, concludes Kaninda, highlighting that FLS will continue to partner with customers so that mining itself becomes more responsible to the environment and community.

Lycopodium engaged by Barrick for Lumwana copper expansion study

Lycopodium has been awarded a contract from Barrick for the feasibility study and basic engineering for the expansion of its Lumwana copper mine in Zambia.

The study and basic engineering contract is valued at approximately A$19 million ($12.5 million), with the project having a capital cost investment of almost $2 billion. Work has commenced, with the accelerated development program targeting completion of the feasibility study by the end of 2024 and expanded process plant production anticipated in 2028.

The expansion of the mine will increase Lumwana’s annual production from 150,000 t of copper at a 26-28 Mt/y process plant production rate, to an estimated 240,000 t of copper at a 50 Mt/y process plant production rate, with an estimated 36-year mine life.

Lumwana is a conventional open-pit (truck and shovel) operation, about 100 km west of Solwezi in Zambia’s Copperbelt. Lumwana ore, which is predominantly sulphide, is treated through a conventional sulphide flotation plant, producing copper concentrate.

Lycopodium Limited’s Managing Director, Peter De Leo, said: “The expansion of Lumwana within Zambia’s world-class copper region supports the country’s commitment to its copper industry, and we are very pleased to have the opportunity to continue our partnership with Barrick and be part of this significant development that will have a material impact on the Zambian economy.”

This engagement follows the award earlier this year of the feasibility study and basic engineering contract for Barrick’s Reko Diq copper-gold project in Pakistan.

First Quantum improves Kansanshi mine reliability with Accelovant fibre-optic sensors

Kansanshi Mining, a First Quantum-owned company located in Zambia, is leveraging Accelovant’s fibre-optic sensors to solve its arcing and electronics failure and signaling issues at the major copper mine.

Kansanshi operates one of the world’s largest and most productive copper mining and smelting sites. The smelting operations use wet electrostatic precipitators (ESP) to clean sulphur dioxide gas by removing acid mist (aerosols) and dust particles that can result in a toxic concentrated sulphuric acid effluent. While ESPs are considered one of the most effective process scrubbers in this application, process temperature control has long been an impediment to more extensive use. Control of the ESP requires temperature measurement technology that can withstand simultaneously high voltage, high temperature range, and high electromagnetic fields.

In application, the wet ESP utilises high-voltage electromagnetic fields to attract or impel different molecules in a gas stream to affect separation and collection. It has one field consisting of discharge electrodes in the centre of tubular collecting electrodes. The gas is ionised by the corona discharge of the discharge electrodes. The particles contained in the gas are charged and migrate under the influence of the electrostatic field to the grounded electrodes.

In the case of the Kansanshi copper smelter, the sulphur dioxide gas from the smelter is moved through the wet ESP plants to separate the acid mist and dust from the gas stream. The acid mist is highly corrosive and, if not removed from the gas, it is capable of damaging downstream equipment such as gas blowers and ductwork.

To operate correctly and prevent damage to the electrical and ceramic components of the wet ESP, it must be heated to a consistent temperature between 325-340°C. Operating in this range will prevent condensation of the mist. If condensation occurs, it substantially increases the risk of short circuiting that can lead to poor unit performance.

Historically the ESPs employed conventional in-stream thermocouples and/or Resistance Temperature Detectors (RTD), both highly susceptible to electrical noise. When employed, these sensors were unreliable and represented a flashover risk due to the high voltage environment.

Pieter Oosthuizen, Control Instrumentation Superintendent, and Bodrick Mumba, Superintendent Operations Sulphuric Acid Plant, both work to maintain consistent and reliable operation of the smelting plant and ESPs. The ESPs operate around the clock in paired sets, processing a constant stream of smelter gas.

According to Mumba, if one ESP is operating outside of the proper temperature range, the volume of smelter gas has to be reduced by cutting down concentrate treatment in the primary smelting furnace until the unit is returned to proper operating status.

“If the temperature drops below the setpoint there is great risk of acid misting and condensing on the ceramic insulators in the ESP,” Mumba said. “If the ceramics are damaged, potential downtime to repair would certainly reduce throughput and output of the plant.”

Maintaining proper temperature control in an extremely harsh environment

In a harsh operating environment surrounding the wet ESPs (high voltage, electrical noise and high temperature), monitoring and managing precise temperature levels through the use of in-stream sensors was a difficult and highly unpredictable exercise. The ESP units supplied by Metso Outotec are designed to allow the use of multiple different sensors that conform to a standardised form factor, enabling the operator to install the most effective sensor for the use case.

“The ESP units operate with a typical 45 kV charge atcurrents in the 500-600 milliamp range,” Oosthuizen said. “In this kind of environment, there is tremendous electromagnetic noise and induced currents in anything that is conductive or that utilises electronics. This includes the thermocouples and RTDs that are typically employed to monitor high temperatures in industrial settings. We tried many different device types, but in all cases the electronics would burn out and fail due to the stray electromagnetic fields.”

Oosthuizen noted that in the smelting plant environment, both RTD and thermocouple devices were subject to high-voltage flashovers which can damage them, or, at a minimum, disrupt the transmitted electrical signals from the sensor to its controller. Such plant conditions contribute to high sensor failure rates, and difficulty in maintaining signals essentially prevented automated control.

An Accelovant fibre-optic sensor

Operating under manual control was more costly, and meant operators had to make regular temperature readings and adjust operational parameters to maintain the proper range. In a complex operating environment with many variables, making these adjustments manually was an ongoing process that consumed substantial personnel time and cost.

The high failure rate of sensors and inability to utilise automated controls were limiting factors in maintaining the reliable and consistent operation of the ESPs and of the productivity of the entire plant. In their search for a workable solution, Mumba and Oosthuizen learned that fibre-optic temperature sensors were widely employed in harsh environments due to their immunity to electrical noise.

“As we researched fibre-optic sensors, it became clear that the inherent immunity to electrical noise could solve our arcing and electronics failure and signaling issues, but we also needed to address the high-temperature operating conditions,” Oosthuizen said. “While operating specifications for most fiber-optic sensor suppliers on the market did extend up to the 325-340° C range, our requirements were toward the top end of the recommended range, so we were a bit apprehensive about product in-service longevity. That’s when we discovered a Canadian supplier that specialised in high temperature fibre-optic sensors.”

The team found a new class of fibre-optic sensors from Canadian manufacturer Accelovant that seemed to address both of the key issues they were trying to solve.

A new class of fibre-optic sensors

Fibre-optic sensors use only the energy of light to measure temperature. Because they contain no electrical function, they are immune to the adverse electromagnetic affects inherent in conventional sensors such as thermocouples and RTDs. While currently employed widely in industrial applications, they are generally limited to 250˚C. Above that temperature, the organophosphorus compounds used to generate the temperature measurement optical signal will begin to fail.

“Accelovant specialises in high temperature fiber optic sensors,” Michael Goldstein, CEO for Accelovant, said. “We went back to the basics of material science and invented a patented ceramic-like optical material to create a new class of fibre-optic temperature sensors that could withstand much higher temperatures and offer longer service life at temperatures exceeding 450°C.”

In April 2022, Accelovant fibre-optic sensors were installed in one of the matched pairs of ESPs operating in the plant. Shortly after installation, Oosthuizen was ready to experiment with utilising the automated controls available in the plant management software.

“We knew that, in theory, the fibre-optic sensors would outperform the electronic sensors, but wanted to be certain that it was also the case in practice,” he said. “After several months of observation and testing, we converted to operating the temperature controls on those two ESP to automatic – for the first time in more than eight years of operation.“

Accelovant fibre-optic sensors delivered the high-temperature longevity and electromagnetic immunity necessary to provide reliable and consistent temperature monitoring and control within the wet ESP copper smelting operations at Kansanshi, the company said.

Oosthuizen reports that after 11 months in service, the Accelovant fibre-optic sensors were performing as demanded and enabled full automated control of the ESPs. “In the years that the ESPs have been in operation, we have never been able to operate without a sensor failing for such a lengthy period,” he noted.

The stability of the Accelovant sensors has finally allowed for automated management of stream temperatures and eliminated some of the operational challenges at the plant.

Mumba added: “The Accelovant sensors have increased our efficiencies by eliminating manual temperature adjustment – a process that could take multiple iterations to achieve the desired results. They provide reliability that allows us to concentrate our time on other matters.”

First Quantum to add to Liebherr T 284 fleet at Sentinel copper mine

First Quantum Minerals is in the process of bolstering its fleet of Liebherr T 284 trucks at the Sentinel operation in Zambia, in line with a redistribution of loading equipment to better suit working areas at the copper mine.

In the company’s March quarter, Sentinel reported copper production of 36,232 t, 37,177 t lower than the previous quarter due to the intense rainy season, resulting in the accumulation of water in the Stage 1 pit.

Saturated ground conditions significantly impacted mining rates due to poor road conditions and water in the pit prevented access to working faces, particularly in the lower benches of Stage 1, First Quantum said in its March quarter results.

Despite the challenges encountered during this quarter, copper production for 2023 remains unchanged at 260,000-280,000 t as higher feed grades are expected in the second half of the year, with grades showing improvement already in April.

“The current focus on deploying additional dewatering capacity in Stage 1 to regain access to the high-grade ore is already yielding results early in the second (June) quarter,” it said.

The mine plan has been rescheduled, even if total volumes remain substantively the same and higher grade zones will be dispatched across the remaining three quarters of the year, the company noted. This is to be complemented by a change in location of the in-pit ramps to liberate high-grade ore by mining the saddle zones between Stage 1 and Stage 2.

There will also be a redistribution of loading equipment to better suit working areas and truck fleet capacity is planned to increase in the June quarter with the commissioning of an additional Liebherr T 284, followed by two more in the second half of the year.

Sentinel is a leader in electric mining as a long-term user of trolley assist technology with its Komatsu 960E and Liebherr T 284 trucks, which run under trolley using pantographs.

At MINExpo 2021, Liebherr confirmed it would supply a further 11 T 284 trucks to operate on trolley lines at First Quantum Minerals’ Sentinel and Cobre Panama mines with the miner claiming, in the process, the title of the world’s largest ultra-class truck fleet on trolley. Three of these 363-t-payload machines were planned to be deployed at Sentinel, with the remainder at Cobre Panama.

Two Liebherr T 284 trucks with the Trolley Assist System were commissioned at Sentinel copper mine all the way back in 2016 and testing of the trolley solution began in February of 2017, with 12 months allotted for FQM to evaluate the trucks, the trolley and the customer service.

At the end of the trial period, FQM expressed it was pleased with the results of the Trolley Assist System and the performance of the T 284, leading to an order for six more trolley-capable T 284 trucks at Sentinel mine, along with 30-trolley-capable T 284 trucks for Cobre Panama copper mine in Panama, Liebherr explained.

Metso Outotec to deliver world’s largest Premier grinding mills to Kansanshi copper mine

First Quantum Minerals (FQM) has awarded an order to Metso Outotec for two very large horizontal grinding mills for the company’s copper mine expansion at Kansanshi in Zambia.

Metso Outotec’s delivery includes two Planet Positive Premier™ grinding mills with a total installed power of 50 MW – the largest Premier grinding mills Metso Outotec has delivered to date.

To meet the need for efficient and fast replacement of the lining systems, as well as ensuring a long wear life, the ball mill will be equipped with the Metso Outotec Megaliner™ and the SAG mill will be equipped with Metso Outotec metallic mill lining and a high-performance discharge system, it explained.

FQM’s Kansanshi mine, located near Solwezi in the North-western Province of Zambia, is among the largest copper mines in the world and the largest in Africa.

First Quantum Minerals is currently working on its further expansion (the Kansanshi S3 Expansion), which includes a standalone 25 Mt/y processing plant that will increase copper production substantially.

Once the expansion is completed, copper production from Kansanshi is expected to average approximately 250,000 t/y for the remaining life of mine to 2044.

The Premier horizontal grinding mills are customisable solutions built on state-of-the-art grinding mill technology, process expertise, and design capability, Metso Outotec says. The Premier horizontal grinding mills are engineered to “excel and create vast possibilities” for customers and applications.

Earlier this week, Metso Outotec was awarded what it says was a major contract for the delivery of sustainable crushing, screening and grinding technologies to a greenfield iron ore project in South America.

First Quantum board signs off development of Kansanshi S3 Expansion, Enterprise nickel project

The First Quantum Minerals Ltd Board of Directors has signed off on the S3 Expansion at the Kansanshi mine and the Enterprise nickel project, both in Zambia.

The approval will lead to work on both projects starting immediately, with the company re-commencing detailed engineering works for the S3 Expansion to determine purchase orders for key long-lead items, including the SAG mill, ball mill and in-pit crushing station; and a mining contractor being mobilised for the Enterprise nickel project in order to commence pre-stripping of the pit in June 2022.

This could see Kansanshi’s life pushed out to 2044 with the introduction of new electrical loading and drilling equipment along with the extension of the current electric trolley assist infrastructure, with Enterprise contributing some 30,000 t/y of nickel concentrate in upcoming years.

“First Quantum has been working constructively with the Government of Zambia’s New Dawn administration as part of their efforts to reform the mining sector, attract investment and increase Zambia’s copper production,” Tristan Pascall, Chief Executive Officer, said. “The approval of the projects reflects First Quantum’s increased confidence in the investment climate in Zambia.”

The S3 Expansion and the Enterprise nickel project are a key part of the company’s brownfield growth strategy, according to Pascall.

“The Kansanshi mine has been a cornerstone asset for First Quantum for 15 years and the S3 Expansion will expand production and extend the mine life for another two decades,” he said. “The low-cost, high-grade Enterprise nickel project is well placed to supply the rapidly growing electric vehicle battery sector.

“The approval of these two projects is an important milestone for the company’s path towards responsible production growth of the metals needed for the global green energy transition.”

The approval of the projects follows the efforts of the New Dawn administration to enhance both the investment climate for mining and to seek commitments from the mining sector to contribute to the national economy and to corporate social responsibility, First Quantum says. These initiatives will help establish a platform for more stable, durable and responsible mining in Zambia.

The Government of Zambia’s commitments address the ease of doing business in Zambia, covering areas such as expediting immigration procedures in exchange for commitments for local employment levels, competitive pricing of power transmission and power procurement from independent sources which in turn will support renewable energy projects, and measures to ensure the ease of importing and exporting goods.

The approvals follow the re-introduction of the deductibility of mineral royalties for corporate income tax assessment purposes that became effective in January. This measure realigned Zambia with international best practice, according to First Quantum. The government’s commitment to improve the predictability of the mining fiscal regime also provides the certainty needed to support large capital investments in Zambia.

“Furthermore, First Quantum and the government have successfully resolved all points of contention that have been stumbling blocks to progress on the S3 Expansion and Enterprise nickel project,” it said. “This includes reaching agreement in respect to the outstanding value-added tax receivable sum and an approach for repayment based on offsets against future mining taxes and royalties.”

The S3 Expansion is expected to transition the current selective high-grade, medium-scale operation to a medium-grade, larger-scale mining operation that will be more appropriate for the higher proportion of primary, lower-grade sulphide ores at depth, First Quantum said. As outlined in the NI 43-101 Technical Report filed in September 2020, the S3 Expansion, when completed, will comprise of a standalone 25 Mt/y processing plant with a new larger mining fleet that will increase Kansanshi’s total annual throughput to 53 Mt/y.

Once the expansion is completed, copper production from Kansanshi is expected to average approximately 250,000 t/y for the remaining life of mine to 2044.

A significant portion of the initial construction works for the S3 Expansion have been previously undertaken with much of the civil and structural work on-site completed, First Quantum said. The remaining work includes completion of the remaining engineering design works, procurement and installation of equipment, electrics, controls and infrastructure. The S3 processing train will comprise of a 28 MW SAG mill and a 22 MW ball mill. The open-pit mine will be expanded to increase the supply of sulphide ore from the Main Pit and extend into the South East Dome deposit. The expanded mining fleet will use similar ultra-class equipment as First Quantum’s other key mines and will benefit from new electrical loading and drilling equipment along with the extension of the current electric trolley assist infrastructure, First Quantum said.

In parallel with the expansion of the mine and processing facilities, the company plans to increase the throughput capacity of the Kansanshi smelter from 1.38 Mt/y to 1.65 Mt/y of concentrate. This will enable the smelter to produce over 400,000 t/y of copper anode.

The total capital expenditures associated with the S3 Expansion is expected to be $1.25 billion, which includes $900 million on the S3 plant and mine fleet and $350 million for pre-stripping of the South East Dome pit. Approximately $800 million of this spending is included in the company’s current three-year guidance released on January 17, 2022, with the balance falling beyond the guidance period. First production from the S3 Expansion is expected in 2025.

The Enterprise nickel sulphide deposit is located 12 km northwest of the Sentinel copper mine. As outlined in the NI 43-101 Technical Report, filed in March 2020, proven and probable reserves at Enterprise total 34.7 Mt of ore at 0.99% Ni.

The Enterprise nickel project will consist of a single, main open pit and one extension to the southwest. It will use the existing 4 Mt/y nickel circuit that was previously built as part of the original Sentinel processing complex. The main workstream to bring the project online will be the pre-strip of waste. The development timeline for Enterprise is expected to be approximately 12 months. At full production, Enterprise is expected to produce an average of 30,000 t/y of nickel in high-grade concentrate.

The total capital expenditures associated with the Enterprise nickel project is expected to be approximately $100 million. Pre-stripping of the Enterprise pit of $60 million is included in the three-year guidance provided earlier this year along with $40 million related to infrastructure and plant commissioning. Expected first nickel production of 5,000-10,000 t of nickel in 2023 is included in the company’s three-year guidance.

Murray & Roberts’ da Costa heralds positive impact of TNT, Insig on mining platform

The global mining platform of Murray & Roberts has significantly extended its capabilities over the past several years with two key acquisitions in the US and Australia, Mike da Costa, CEO of the platform, says.

The two companies in which majority interests have been acquired are San Diego, USA-based Terra Nova Technologies, a materials handling specialist, and Australia-based start-up Insig Technologies, which develops and provides digital solutions in the mining field.

Terra Nova designs, supplies and commissions overland conveyors, crushing/conveying systems, mobile stacking systems and in-pit crushing and conveying systems. It has delivered around 75 projects in more than 15 countries, according to Murray & Roberts.

“Terra Nova is a perfect fit for M&R’s mining platform and gives us the capability of delivering, for example, conveying systems of up to 12 000 t/h capacity,” da Costa says. “Its biggest market is North America but it is also active in South America and has an office in Santiago, in Chile. It has, in fact, just won a major contract in Chile.

Our intention is to grow the business by leveraging our global footprint. We will soon establish an Australian arm and we could also bring the company’s services to the African market.”

Commenting on the Insig Technologies acquisition, da Costa says the company is playing a key role in the mining platform’s move towards greater digitalisation of its operations.

“We’ve been working on a digital strategy for the mining platform for some time now and the acquisition of Insig is central to our digital journey,” he says. “Insig’s speciality is extracting data from underground mining environments in real time and then using this data to optimise operations. The company also has in-depth capability in the remote control of machines. We will be using its systems in house initially but will eventually market them to the wider mining industry.”

Interestingly, Insig is playing a key role in developing an energy-saving solution at an Australian mine where our Australian company is working. “Basically, we’re looking at capturing the energy that would normally be wasted in a hoisting shaft and storing it in batteries,” da Costa explains.

Insig Chief Technology Officer, Giacomo Alampi; Toran Filippi – Manager Operations Technology; Peter Ellery, Growth Executive; and Brett Hartmann – Manager Digital & Technology at Murray & Roberts, went into detail about this project in a discussion with IM earlier this year.

The Murray & Roberts mining platform consists of three regional businesses. These are Murray & Roberts Cementation, headquartered in Johannesburg but with branches in Kitwe in Zambia and Accra in Ghana; Cementation Americas (which incorporates Cementation USA), based in Salt Lake City, which handles the Americas; and RUC Cementation, which operates out of Perth in Australia and works throughout Australasia and South-east Asia.

First Quantum to operate world’s largest ultra-class truck trolley fleet with Liebherr T 284

The day after announcing it will accelerate the implementation of its existing low carbon solutions and trigger future projects at MINExpo 2021, Liebherr has confirmed that it will supply a further 11 T 284 trucks to operate on trolley lines at First Quantum Minerals Limited (FQML)’s Sentinel and Cobre Panama mines with the miner claiming, in the process, the title of the world’s largest ultra-class truck fleet on trolley.

In 2013, Liebherr received an initial request from FQML to develop a 360 t trolley-capable haul truck for mine sites in Panama and Zambia. The trucks were required to integrate with the trolley power line that FQML had designed and developed for the sites.

Agreeing to this partnership, Liebherr engineers began developing, testing and verifying the trolley solution. Two Liebherr T 284 trucks with the Trolley Assist System were commissioned at Sentinel copper mine in Zambia in 2016 and testing of the trolley solution began in February of 2017, with 12 months allotted for the customer to evaluate the trucks, the trolley and the customer service.

At the end of the trial period, FQML expressed it was pleased with the results of the Trolley Assist System and the performance of the T 284, leading to an order for six more trolley-capable T 284 trucks at Sentinel mine, along with 30-trolley-capable T 284 trucks for Cobre Panama copper mine in Panama, Liebherr says.

As a mark of success of the partnership between FQML and Liebherr, along with the performance of the T 284 with trolley solution, FQML recently confirmed an order for a further 11 T 284 trucks. These three trucks for Sentinel mine and eight trucks for Cobre Panama mine will join the existing fleets operating with the Trolley Assist System. This soon-to-be fleet of 38 T 284s in Panama will claim the title of the world’s largest ultra-class truck fleet on trolley, according to Liebherr.

“Trolley Assist truck systems have become integral to the development of First Quantum’s large scale open-pit truck haulage operations,” an FQML representative says. “Over the last decade, First Quantum has emerged as one of the industry leaders in implementation of Trolley Assist systems across mine planning and design, installation, operations, and maintenance. We consider our purpose designed Trolley Assist systems deliver a step change in measurable haulage performance through increased truck productivity, improved maintenance cost, and reduced carbon emissions.

“During the past five years, Liebherr has proven itself as a proactive partner in the development of Trolley Assist capable truck fleet systems. First Quantum has selected the Liebherr T 284 ultra-class truck for some of our Trolley Assist deployments at our large-scale mining operations in Zambia and, more recently, as the sole deployed truck at our Panama mining operations. With a high degree of co-operation between our organisations, we see this partnership continuing to grow in years to come.”

Oliver Hoelzer, Director of Mining Liebherr-Panamá, says: “Even before the arrival of the very first truck, Liebherr Panama’s relationship with FQML Panama has been more of a mutual partnership than a pure business relationship. Our highly committed team recognises that Liebherr’s own success is intrinsically linked to the success of FQML.”

Liebherr has also delivered six trolley-capable 100 t T 236 haul trucks to the Erzberg iron ore mine in Austria, bringing the total number of Liebherr trucks with the Trolley Assist System to 56 once FQML’s newest fleet has been commissioned.

Liebherr aims to offer fossil fuel free solutions for its entire digging, dozing, and hauling product range by 2030.

NextOre’s magnetic resonance tech up and running at First Quantum’s Kansanshi

Australia-based NextOre is onto another ore sorting assignment with its magnetic resonance (MR) sensing technology, this time in Zambia at First Quantum Minerals’ Kansanshi copper mine.

NextOre was originally formed in 2017 as a joint venture between CSIRO, RFC Ambrian and Worley, with its MR technology representing a leap forward in mineral sensing that provides accurate, whole-of-sample grade measurements, it says.

Demonstrated at mining rates of 4,300 t/h, per conveyor belt, the technology comes with no material preparation requirement and provides grade estimates in seconds, NextOre claims. This helps deliver run of mine grade readings in seconds, providing “complete transparency” for tracking downstream processing and allowing operations to selectively reject waste material.

Having initially successfully tested its magnetic resonance analysers (MRAs) at Newcrest’s Cadia East mine in New South Wales, Australia, the company has gone onto test and trial the innovation across the Americas and Asia.

More recently, it set up camp in Africa at First Quantum Minerals’ Kansanshi copper mine where it is hoping to show off the benefits of the technology in a trial.

The MRA in question was installed in January on the sulphide circuit’s 2,800 t/h primary crushed conveyor at Kansanshi, with the installation carried out with remote assistance due to COVID-19 restrictions on site.

Anthony Mukutuma, General Manager at First Quantum’s Kansanshi Mine in the Northwestern Province of Zambia, said the operation was exploring the use of MRAs for online ore grade analysis and subsequent possible sorting to mitigate the impacts of mining a complex vein-type orebody with highly variating grades.

“The installation on the 2,800 t/h conveyor is a trial to test the efficacy of the technology and consider engineering options for physical sorting of ore prior to milling,” he told IM.

Chris Beal, NextOre CEO, echoed Mukutuma’s words on grade variation, saying daily average grades at Kansanshi were on par with what the company might see in a bulk underground mine, but when NextOre looked at each individual measurement – with each four seconds representing about 2.5 t – it was seeing some “higher grades worthy of further investigation”.

“The local geology gives it excellent characteristics for the application of very fast measurements for bulk ore sorting,” he told IM.

Mukutuma said the initial aim of the trial – to validate the accuracy and precision of the MRA scanner – was progressing to plan.

“The next phase of the project is to determine options for the MRA scanner to add value to the overall front end of processing,” he said.

Beal was keen to point out that the MRA scanner setup at Kansanshi was not that much different to the others NextOre had operating – with the analyser still measuring copper in the chalcopyrite mineral phase – but the remote installation process was very different.

“Despite being carried out remotely, this installation went smoother than even some where we had a significant on-site presence,” he said. “A great deal of that smoothness can be attributed to the high competency of the Kansanshi team. Of course, our own team, including the sensing and sorting team at CSIRO, put in a huge effort to quickly pivot from the standard installation process, and also deserve a great deal of credit.”

Beal said the Kansanshi team were supplied with all the conventional technical details one would expect – mechanical drawings, assembly drawings, comprehensive commissioning instructions and animations showing assembly.

To complement that, the NextOre team made use of both the in-built remote diagnostic systems standard in each MRA and several remote scientific instruments, plus a Trimble XR10 HoloLens “mixed-reality solution” that, according to Trimble, helps workers visualise 3D data on project sites.

“The NextOre and CSIRO teams were on-line on video calls with the Kansanshi teams each day supervising the installation, monitoring the outputs of the analyser and providing supervision in real time,” Beal said. He said the Kansanshi team had the unit installed comfortably within the planned 12-hour shutdown window.

By the second week of February the analyser had more than 90% availability, Beal said in early April.

He concluded on the Kansanshi installation: “There is no question that we will use the remote systems developed during this project in each project going ahead, but, when it is at all possible, we will always have NextOre representatives on site during the installation process. This installation went very smoothly but we cannot always count on that being the case. And there are other benefits to having someone on site that you just cannot get without being there.

“That said, in the future, we expect that a relatively higher proportion of support and supervision can be done through these remote systems. More than anything, this will allow us to more quickly respond to events on site and to keep the equipment working reliably.”