Tag Archives: Anssi Poutanen

Metso Outotec adds mill lining recycling to latest Boliden Kevitsa service agreement

Metso Outotec says it has signed a Life Cycle Services (LCS) contract with Boliden for its Kevitsa mine in the Sodankylä region of Finland, which will see the OEM offer the mining company a novel Planet Positive mill lining recycling service for used liners.

The 3+2-year agreement covers the supply and optimisation services of the Megaliner™ liners for four mills with advanced discharge systems, supported by shutdown planning and execution services of the mill linings.

The contract is a performance-based cost-per-tonne agreement, with the common target to ensure the availability of the grinding circuit and to maximise valuable production time, striving for a common sustainability goal that benefits both parties, the company said.

The value of the order is about €35 million ($34 million) and the first part of the contract has been booked in Minerals’ September quarter orders received.

Anssi Poutanen, Senior Vice President, Mill Lining business line, Metso Outotec, said: “We are very excited to expand cooperation with Boliden in Finland. Metso Outotec is committed to supporting Boliden’s operative and sustainability targets and further increasing their liner wear life. When it is time to replace the worn liners, our innovative mill lining recycling service will dispose of the worn liners in a sustainable way.”

After over a decade of intensive development work and pilots for worn mill liner recycling, Metso Outotec says it is ready to introduce its latest circularity innovation, a unique separation line to process rubber, Poly-Met™ and Megaliner liners of all sizes. For customers, the new mill liner recycling service solves the problem of disposing of worn mill liners and offers a way to reduce CO2 emissions and improve environmental efficiency, as less material is being sent to landfills unprocessed, according to the company.

The first-of-its-kind service aims to recycle and create value from used mill liners on an industrial scale. It enables the separation of different liner components so that they can be either reused or recycled in the most optimal way.

Lars Furtenbach, RTD & Engineering Director, Mill lining business line at Metso Outotec, said the new separation line has already processed more than 200 liners.

“We are also exploring ways to increase the number of recycled materials in our liners to further close the circularity loop,” he added.

In the first phase, the recycling service using the new separation line is available for mill lining service contract customers in Europe. The recycling service will be expanded to new markets in 2023.

Metso completes mill lining hat-trick with Discharge End Megaliner

Metso has once again flexed its R&D muscles, launching a new and innovative product that, it says, can speed up and improve the safety of one of the trickiest and riskiest processes mill personnel carry out.

The Discharge End Megaliner builds on the Metso Megaliner™ concept the company introduced in 2012. Designed to reduce downtime by minimising the number of parts and people inside the mill during a relining process, the Megaliner has so far been installed in over 30 mills around the world.

A Megaliner element integrates multiple lifter and plate rows and has a minimum number of attachment points. Covering an area several times larger than conventional liners, these liners are light weight in relation to their size and, with threaded bushings, enable safer and faster relining processes to be conducted.

The initial 2012 Megaliner launch saw these lightweight liner parts developed for the mill shell. In 2015, Metso expanded the lining concept to the feed end of grinding mills. The company is now ready to tackle the tricky mill discharge end to complete the hat-trick.

Anssi Poutanen, Vice President of Metso’s Mill Lining product line, said the mill shell was the obvious starting point in the Megaliner evolution.

“The shell represents the largest number of components to install so the potential for time savings for customers was large, hence why the Megaliner started there,” he told IM. “We have since extended to the feed end of the mill and now to the discharge end.”

The new product, which has been in the development pipeline for some time, according to Poutanen, is by no means just a bolt on to the existing Megaliner range.

“Even though the discharge section of the mill lining process is not as big from a volume perspective, the need for long bolts and a complex fixing arrangement in conventional installations makes it one of the most time-consuming and risky processes to carry out,” he said. “The Discharge End Megaliner is a highly valued addition to our Megaliner range as many of our customers struggle with the process.”

The conventional process Poutanen references here is worth spelling out.

With grate discharge mills – typically SAG, AG and ball mills – the conventional relining process at the discharge end usually involves removing the dischargers and grates, replacing with new lined versions and hammering in large, long bolts through the layers to secure the liner components.

“Even if modern recoilless hammers are used, it is still a challenge,” Poutanen said. “When the bolts become loose, they are hazardous and can potentially injure personnel.” In this process, personnel are also inside the mill – one of the most dangerous sections of the whole process plant.

On top of the large, long bolts, nuts are also required to fix the panels in place with conventional lining processes, adding up to multiple individual pieces and attachment points that must be fixed securely from inside the mill, Poutanen explained.

The Discharge End Megaliner, meanwhile, sees dischargers, grates and segments preassembled into one large unit. These are equipped with threaded bushings that are secured with “short bolts” from – very importantly – outside of the mill, he said.

This makes for an up to 50% faster lining installation using up to 70% fewer parts than the conventional process, according to Metso.

Poutanen says the new Discharge End Megaliner can be applied to any type of grate discharge mill – there is no prerequisite for Megaliner liners in the shell and feed end, for example – as long as there is a wide enough trunnion opening to remove and replace the liners, and a liner handler of sufficient capacity.

Metso is targeting the large end of the grinding mill market with this new development. The larger the mill, the greater the throughput, which has a direct impact on the costs associated with potential downtime caused by the relining process, Poutanen explained.

This has already been tested out at Boliden’s Aitik mine, in Gällivare, Sweden, which is currently undergoing an expansion to 45 Mt/y throughput.

The base metal mine already has Megaliner mill liners on the shell and feed end of both of its primary AG mills and has tested the new Discharge End Megaliner over nine months at one of these 38 ft (11.6 m) mills.

The Aitik trial has proven around 70% fewer parts are required compared with the conventional process. Relining has also been carried out much quicker and safer, according to Poutanen.

Similar to LHD operators being removed from the cab in order to remotely operate loaders in potentially unstable areas of underground mines, the ability to carry out the relining process from outside of the mill ‘danger zone’ could be considered an initial stage towards a fully automated relining process.

Poutanen agreed: “I think at some point, we will see a higher degree of automation. It is unlikely to be binary; it will be a gradual process.”

He said the combination of the Megaliner and Metso’s camera-based liner positioning system – which is offered to all Megaliner customers as an “add on” to the liner handling equipment – could help make the process more autonomous.

In order to be able to develop this kind of fully autonomous package, a close collaboration with customers and liner handler suppliers is required, he said. “I think we are still a few years away from having the process move to fully autonomous mode.”