Tag Archives: autoclave

Metso builds out Ma’aden relationship with Mansourah & Massarah LCS contract

Metso says it has signed a two-year Life Cycle Services (LCS) contract with Ma’aden’s Base Metals and New Minerals company’s new gold processing plant at the Mansourah & Massarah site in Saudi Arabia.

Metso will support the customer in commissioning, ramping up and optimising the new greenfield site, covering both maintenance and plant operations, it says. Other elements of the agreement are field services and recommendations for wear and spare parts management, and advisory and training services.

The agreement demonstrates Metso’s service expertise, and it is an important continuation of the greenfield mineral concentrator and gold processing plant agreement signed in 2019, it said. This contract, related to Outotec at the time, saw a consortium of Outotec and Larsen & Toubro awarded with an engineering, procurement and construction contract to build a greenfield mineral concentrator and gold processing plant in the Kingdom of Saudi Arabia.

The Mansourah & Massarah operation has been built in the Central Arabian gold region, with the processing plant capable of up to 4 Mt/y throughput. The concentrator and the gold processing plant has been designed to produce an average of 250,000 oz/y of gold over the life of mine.

The customer has the option to extend the contract by one year.

Kamal Pahuja, President Middle East and India market area, Metso, said: “We are very delighted with the customer’s continued trust in Metso. By choosing Metso’s Life Cycle Services contract, Ma’aden will receive comprehensive and top-notch service solutions as well as on-site technical expertise and support. We are committed to safety and sustainability objectives and will work with and support the customer in achieving their operational objectives. We are also committed to strengthening our service capabilities in the region to serve the growing customer base.”

Duncan Bradford, Executive Vice-President, Ma’aden Base Metals and Minerals BU, said: “Our aim is to lift the productivity of the new plant to the target level, strengthen the skills of our Saudi employees, and achieve our production and safety targets. The new plant will use three different methods of gold processing, including the first autoclave in Saudi Arabia; this requires a lot of know-how and proactive planning for trouble-free operation and maximum productivity. Metso already has a comprehensive range of key equipment for the plant flowsheet, and we will be able to benefit from Metso’s technological and service expertise.”

i-80 Gold brings Hatch in to evaluate Lone Tree autoclave restart

i-80 Gold Corp has awarded the engineering study for restart of the Lone Tree autoclave in Nevada, USA, to Hatch Ltd.

The study will complete a prefeasibility study (PFS) level mechanical and operational review of all aspects necessary for the restart of the company’s autoclave processing facility in northern Nevada.

i-80 acquired the Lone Tree property and associated infrastructure capable of, it says, processing all Nevada ore types from Nevada Gold Mines in 2021. The Lone Tree complex includes an autoclave, floatation circuit, tailings compound and heap leach facility that will become the hub of i-80’s Nevada operations and, it says, provide the platform to realise its future production growth plans of becoming a 500,000 oz/y producer.

The study, combined with an extensive metallurgical program of the mineralisation from the company’s Granite Creek, McCoy-Cove and Ruby Hill projects, will allow management to consider a range of restart opportunities and associated capital costs, it said. In the interim period, i-80 has secured processing agreements with Nevada Gold Mines so that it can commence underground development at Granite Creek, seeing material delivered to Nevada Gold Mines during the second half of 2022.

Matt Gili, President and Chief Operating Officer of i-80, said: “The extensive experience and expertise brought by Hatch Ltd will be one of the crucial elements enabling i-80’s success in re-commissioning and operating Nevada’s newest refractory processing facility.”

The Axora take on crushing and comminution

As we are continually told, comminution is one of the most energy intensive single steps in the resource extraction business.

One estimate is that it accounts for 36% of all the energy used in the extraction of copper and gold, which is only a shade over the 30% proposed as an average by another industry expert for all mining and mineral processing industries.

It also accounts for an estimated 3% of the global energy requirement for metal production.

These energy requirements are shocking from a sustainability and greenhouse gas emission perspective; they are also extremely costly regarding operating expenses on site.

It is with this in mind that IM touched base with Joe Carr, Industry Innovation Director of Mining at Axora.

A spinoff from the Boston Consulting Group, Axora has emerged as a business-to-business digital solutions marketplace and community for industrial innovators. It says it allows industrial companies to discover, buy and sell digital innovations and share knowledge in its community, powered by an advanced marketplace.

“We exist to transform industries to be digital, safer, more sustainable and efficient,” the company states on its website.

Having recently gone to press with the annual crushing and comminution feature (to be published in the IM April 2021 issue), IM spoke with Carr to find out what the Axora marketplace has to offer on the comminution and crushing front.

IM: What are the main issues/concerns you continuously hear from your mining clients when it comes to designing and maintaining comminution circuits? How many of these problems/issues can already be solved with existing technology/solutions?

JC: One of key issues in this area we hear from our customers at Axora is the blending quality of the input ores.

Joe Carr, Industry Innovation Director of Mining at Axora

This could be particularly relevant in the sulphide space, for instance.

I did some work years ago on Pueblo Viejo for Barrick. When I was there, one of the things we were working on was blending the sulphides as we were feeding the mill from numerous satellite pits with very different sulphide grades. Because we were processing the ore with an autoclave, high-grade sulphides would cause a temperature spike and the low-grade sulphides would lower the temperature. This constant yo-yoing of the feed into the autoclave was terrible for the recovery of metals against the plan.

Generally, the old school way of blending is setting up stockpiles of ore based on whatever variable you want to manage at your operation. You would put a defined amount of each into the primary crusher on the understanding this would create a ‘blended’ feed for the processing plant.

With the information we have at our fingertips today, this process seems outdated.

You could, for example, use HoloLens or another VR system in tandem with the shovel operator to be able to see exactly what material he or she is excavating. That can then be linked back to the geological block model, with this material then tracked in the trucks and onto the run of mine stockpile, before heading to the plant.

This is where something like Machine Max comes in. Machine Max is a bolt-on IoT sensor that tracks where your trucks are in real time – where they have been and where they are going. The processing piece requires block model integration into a mine plan system. If you have the building blocks in place – the networking, sensors, additional infrastructure, etc – Machine Max could, when integrated with this model, allow you to attempt real-time ore tracking.

“If you have the building blocks in place…Machine Max could, when integrated with this geological block model, allow you to attempt real-time ore tracking,” Joe Carr says

The issue is not that the technology doesn’t exist, but that the mining industry hasn’t yet cracked putting all of this together at an industry-wide scale, available to all miners.

You can carry out a project like this or go totally the other way and have a machine-learning or artificial intelligence algorithm in the plant that is constantly reading the incoming feed. These could be based around the block model inputs, or a digital XRF solution, which is able to constantly tweak or adjust the plant settings to the feed specifications. Process plants are generally setup to handle one type of feed. This is usually only tweaked in retrospect or for short periods of time when the mine plan moves into a different mining horizon.

We also have a comminution solution that understands the feed coming in and optimises the mill and power settings to get the optimal grind for flotation, maximising recovery at the back end. While the input is typically set up to be grind quality and hardness for optimal flotation, there is no reason why you couldn’t configure it for, say, sulphides going into an autoclave, tweaking the autoclave heat settings dependent on the feed.

Once that system is set up, it becomes a self-learning algorithm.

Saving operational costs is another pain point for mining companies we always hear about.

We have a solution on our marketplace from Opex Group, which is looking to optimise production while reducing power. Coming from the oil & gas space, this AI algorithm, X-PAS™, offers the operator an opportunity to adjust the settings while still achieving the same required outputs. This is tied to CO2 reduction, as well as power cost reductions.

Opex Group’s AI algorithm, X-PAS, offers the operator an opportunity to adjust the plant settings while still achieving the same required outputs

In mining, the plant is your largest drawer of power, hands down. Generally, if it is not powered on the grid, it is powered by diesel. Opex Group’s solution can save up to 10% of power, which is a significant amount of fuel and CO2.

The solution reads information from your pumps and motors, analyses the planned output of your plant using all the sensor feeds, and tweaks the variables while sustaining the required output. The algorithm slowly learns how you can change configurations to reduce power, while sustaining throughput. This results in lower power costs, without impacting the output.

Importantly, instead of automating the process, it offers the saving to the operator sat in the control room. Operators, in general, are incredibly reluctant to pass over control to an AI algorithm, but when faced with such power saving opportunities, they will often elect to accept such a change.

And, of course, plant maintenance is always on the agenda.

This is where Senseye, which has been used in the car industry by Nissan and the aluminium sector by Alcoa, is useful.

Essentially, this provides predictive maintenance analytics. It is also a no-risk solution with Senseye backed by an insurance guarantee. It is sold on the basis that if you do not earn your money back within the first 12 months, you get an insurance-backed refund.

There could also be openings in the plant for Razor Labs’ predictive maintenance solution, which is currently increasing the uptime of stackers, reclaimers and car dumpers for iron ore miners in the Pilbara.

IM: When it comes to future comminution equipment design, do you expect digitalisation, wear liner innovations, or equipment design to have more of a bearing on operational improvements at mine sites? Phrased another way; is more emphasis being given to refining and extending the life of existing products with digital technologies and wear solutions, than the design of brand-new equipment?

JC: We believe there is always going to be a focus on retrofit and extensions. Once a mill is built, changing the equipment, upgrading, etc is very hard and time consuming. The logistics of getting a new SAG mill to site, for example, are mind boggling. New technology will always come for new sites, but most of the world’s mining capacity is already in place. I would expect most digitalisation to focus on two areas:

  1. Getting more and longer life from all the assets. For example, extending liner life, reducing operating costs and shortening downtime between refits; and
  2. Drawing insights from the existing asset with a view to sweating it. No mill ever stays at nameplate; there is always an increase in production. One or two percent more throughput can put millions onto the bottom line of a company. No mill wants to be a bottleneck in the cycle. In a mine there are always two goals: the mine wants to produce as much ore as possible to put the pressure on the mill, and the mill wants to run as fast as possible to put pressure on the mine.

When it comes to extending liner life, we have a solution worth looking at.

One of the companies we work with out of Australia has an IIoT sensor all tied to wear and liner plates. It is a sensor that is embedded into a wear plate and wears at the same time as the wear plate itself wears. It provides this feedback in real time.

So, instead of the standard routine changeout, it gives you real-time knowledge of what it is happening to these wear parts.

We have a great case study from Glencore where they installed the sensors for around A$200,000 ($152,220) and it saved several million dollars. The payback period was just weeks.

Where I want to take it to the next level is pairing the wear plate monitoring technology on chutes and ore bins and looking into SAG mills and crushers. Relining your SAG mill or primary gyratory crusher is a massive job, which takes a lot of time and cuts your productivity and output by a huge amount. Wear plates are made as consumables, so if you can use 5% less over the space of a year, for instance, there are huge cost and sustainability benefits. You can also more accurately schedule in maintenance, as opposed to reacting to problems or sticking to a set routine.

IM: When compared with the rest of the mine site, how well ‘connected’ is the comminution line? For instance, are gyratory crushers regularly receiving particle size distribution info for the material about to be fed into it so they can ‘tailor’ their operations to the properties of the incoming feed?

JC: Generally, not really. The newer, better financed operations tend to have this. Taking the example above, when designing a plant flowsheet, the close side settings are used. But are they updated on the fly to optimise the plant? Not really. Most processes are designed with a set number of conditions to operate at their maximum.

Most plants dislike, and are not set up to handle, variation in their system, according to Carr

Most plants dislike, and are not set up to handle, variation in their system. They like consistent feed quality and grade to achieve maximum recoveries. Over the next few years, the companies that develop the best machine learning or AI models to run plants in a more real time, reactive way will see the biggest growth. A mill will always say it’s the mine that needs to be consistent, but the nature of geology means that you can never rely on this. As one geologist I knew said, “geology, she is a fickle mistress”.

IM: Where within the comminution section of the process flowsheet do you see most opportunity to achieve mining company sustainability and emission goals related to energy reductions, water use and emissions?

JC: In terms of emissions, at Axora we are actively looking at technology that can help across the entire plant. There was a great paper published in 2016 around this specific topic ‘Energy Consumption in Mining Comminution’ (J Jeswiet & A Szekeres). The authors found that the average mine used 21 kWh per tonne of ore processed. Given diesel produces 270 g per kWh, this means a plant produces 5.6 kg of CO2 per tonne of ore processed, on average. For a 90,000 t/day site, this might represent 510 t of CO2 per day (186,000 t/y), just for processing. To put that into context, you would need 9.3 million trees to offset that level of carbon.

If the industry is serious about lowering its carbon footprint, especially Scope 1 and 2 emissions, then the focus has to come into the process. There are easy wins available from proven solutions in other sectors for companies that want to take them.

ValeOre Metals considering Platsol, Falcon separator, Steinert ore sorting for Pedra Branca

ValeOre Metals Corp’s Pedra Branca platinum group element (PGE) project, in north-eastern Brazil, looks increasingly like leveraging the Platsol™ high temperature pressure leaching process judging by the latest test work.

Metallurgical results from sample material collected from outcrops at the Trapia and Curiu deposits areas at Pedra Branca for two preliminary Platsol tests conducted at SGS Lakefield, Ontario, have shown recoveries of 93.4-93.6% for palladium and 95.3-95.7% for platinum were achieved.

The company now plans two additional Platsol tests, to be performed by SGS, to determine the effects of adding elemental sulphur to the autoclave to optimise conditions required for PGE and gold recoveries, it said.

Platsol is a high temperature (>200°C) pressure leaching process designed to recover PGEs, gold and base metals. It has been shown to be particularly effective with PGE ore feeds characterised by high concentrations of chromium and low concentrations of sulphide, much like Pedra Branca, according to ValeOre Metals. The PGEs and gold are solubilised as chloro-complexes by the addition of chloride salt to the autoclave, while base metal sulphides are oxidised to form soluble metal sulphate complexes. The precious metals can be recovered directly from the autoclave discharge slurry by carbon absorption, or by precipitation with sulphide ions.

Platsol consists of standard, proven traditional technologies that are in use in mines around the world, according to the company.

The Platsol tests are part of a comprehensive mineralogical evaluation ongoing at SGS to characterise the speciation of palladium and platinum in Pedra Branca mineralisation to guide future process optimisation initiatives.

As part of this, the company is continuing with Falcon Ultrafine gravity separation test work as a potential pre-concentration circuit to upgrade feed material and improve mass pull.

The company has also initiated hot cyanide leach test work to assess the recovery rates of palladium, platinum and gold in a cyanide leaching process, and will shortly commence shipment of 100 representative chip samples from historic drilling at the Esbarro deposit to Steinert’s facility in Minas Gerais, to evaluate the potential of sensor-based ore sorting test work.

ValOre’s Chairman and CEO, Jim Paterson, said: “The pace of success at Pedra Branca has increased dramatically in the last three months, including today’s release of PGE metallurgical recovery rates of in excess of 93% for palladium and 95% for platinum using the Platsol process.

“Together with an aggressive property-wide exploration program, we are now focused on rapidly optimising the conditions, procedures and processes to further maximise the upside potential of the Pedra Branca project.”