Tag Archives: Blasting

BME brings technical blasting services online

Omnia Group company, BME, says it is now providing technical blasting services online, giving the industry access to experienced specialists through virtual consultations and solutions.

The service is an important part of BME’s recently upgraded website, according to the company’s Global Manager for Blasting Science, D Scott Scovira.

“Our online technical blasting service is provided not only by BME’s in-house technical staff, but it is also in association with other recognised third-party specialists in blasting, mining and construction,” Scovira said. “The initial online consultation to discuss and scope out a blasting project is at no charge, and the service is not limited to existing BME clients only.”

The range of services offered include blast fragmentation distribution prediction for surface greenfield sites, fragmentation distribution optimisation for supporting mine-to-mill initiatives at established surface and underground sites, and rock characterisation and specifications for blasting in hot or reactive ground. The team are also able to provide solutions related to highwall blast design and management, as well as novel and disruptive blast design and mining methods, it said.

MAXAM’s automation and digitalisation efforts continue with X-Energy

Blasting solutions provider, MAXAM is continuing its automation and digitalisation drive with the development of its X-Energy innovations, all of which are aimed at ensuring the proper use of its explosives’ energy to optimise downstream outputs, according to MAXAM Technical Senior Advisor, Vicente Huélamo.

As part of this, MAXAM has developed a “powerful and structured” digital platform called MAXAM Blast Center for storing, managing and sharing blast-related data. The platform is a user friendly, customised web-based system that can be accessed remotely.

Users can track information and generate reports detailing blasting activities in real time, since the platform enables the full integration of MAXAM digital tools to design, plan and conduct efficient drilling and blasting operations, the company said. The MAXAM Blast Center can include downstream data from the mine to track and optimise drilling and blasting, with the process commencing with blast design information generated in RIOBLAST, MAXAM’s blast design software, and transferred to the Blast Center platform.

RIOBLAST takes into account rock characteristics and blasting requirements to define the blast loading plans, timing configuration and the bulk explosive density profile for each specific rock layer along the borehole.

The complete blast design is then transferred to the Blast Center from where it can be assigned to the specific Mobile Sensitising Unit (MSU) and the X-Logger. On the bench, the blaster can gather actual data with the X-Logger, such as stemming length and hole conditions, while the MSU loads the boreholes according to the blast loading plan, MAXAM explained. The actual loading data is transferred back to the Blast Center where the information can be shared and processed.

“Innovative solutions using data science, business intelligence, equipment utilisation and blast optimisation can be developed as a consequence of the digitalisation of blasting processes,” MAXAM says. “The application of artificial intelligence and machine learning are key to generating value at each stage of the mine production cycle.”

The new generation of MAXAM’s fully digitalised MSUs, X-TRUCK, represents state-of-the-art technology for the manufacturing and loading of bulk blasting products, according to the company.

X-Truck offers a means of communication between the MAXAM Blast Center and the MSU control system, the company said. Loading plans can be sent directly to the loading units via a high-speed Wi-Fi network, allowing each MSU manufacture the specified quantity of product and load it directly into each borehole.

“The sensitising and loading of explosives is an operation that requires the highest quality standards to achieve the desired results,” the company explained. “MAXAM Blast Center ensures that the entire process, from blast design, data exchange, to final product application and blasting outcomes, is consistently performed safely, correctly and efficiently to always produce the optimum blasting outcomes.”

X-Logger, meanwhile, is an application for portable devices designed to collect and digitise actual data on the bench, such as borehole parameters after drilling, the amount of product loaded in each borehole, stemming control and other attributes. The device is fully integrated into the MAXAM Blast Center in a way that the data retrieved from the field is automatically updated in the platform using the internet connection. In the absence of such a connection, the data is synchronised when the connection is re-established.

MAXAM concluded: “The integration of geology, blasting design and drilling information into an innovative explosive application technology contributes to the mine optimisation program. These optimisation capabilities involve the ability to continuously model and measure all related phenomena and operational performance and consolidate them into a continuous improvement program of all the mine operations.”

BME launches Blast Alliance brand to encourage blasting technology collaboration

Blasting technology is moving mining towards a more sustainable future, with BME and its recent launch of the ‘Blast Alliance’ brand looking to add impetus to this evolution.

The Omnia Group company has announced that Blast Alliance will encompass its portfolio of digital innovations including its BLASTMAP™ planning software, BME Blasting guide app and XPLOLOG™ cloud data platform. Solutions such as AXXIS™ integration, custom development and training also fall under this brand.

“Our new Blast Alliance brand represents the company’s journey of digital innovation and the collaborative approach we take in this exciting process,” BME Managing Director, Joe Keenan, said. “We believe this collaboration must be holistic, so we partner in three arenas: internally to optimise our solutions; through direct engagement with our customers; and working with third-parties where the need is identified – to enhance outputs for customers.”

Keenan said by giving BME’s software and solutions portfolio its own brand and identity, it will assert a unique market position underpinned by the company’s spirit of enterprise and the highest levels of integrity.

Michelle Fedder, BME Manager: Marketing and Brand, emphasised that the step was part of enhancing BME’s reputation as a technology and innovation-orientated partner.

“Blast Alliance provides our software portfolio with its own values, character, essence and value proposition,” Fedder said. “From a marketing perspective, the brand assures our customers of collaborative, innovative and integrated digital and automated mining and blasting solutions – further enhancing their value chains.”

The portfolio will adapt and evolve with key solutions as needs are identified, applying BME’s growing depth of digital and technological expertise, according to BME Software Product Manager, Christiaan Liebenberg.

“We are delivering flexibility, fluidity and future-facing solutions to our customers,” Liebenberg said. “A key focus here is the integration of our technology with mine-wide platforms, as part of the drive to support mining’s ongoing productivity efforts. Our initiatives also leverage digital technology to allow greater availability of real-time data.”

Keenan said that the Blast Alliance brand underscored the company’s core objectives in its offering to customers. These include optimising productivity, efficiency and safety while minimising risk through predictability – as well as reducing costs, promoting data-driven and real-time decision making, and enhancing process optimisation.

“As the mining sector embraces more technology, it is likely to be increasingly viewed as a forward-looking contributor in the transition to a more sustainable economy,” he said. “Implementing digital communication infrastructure at mine level can also have positive spin-offs for local communities – potentially improving connectivity in remote areas as part of mining’s environmental, social and governance commitment.”

BME breaks another electronic detonator blast record in South Africa

Another South African record for the largest electronic detonator blast has been broken by the blasting and explosives company BME.

The blast was conducted by BME, an Omnia Group company, at the end of 2020 at a manganese mine in South Africa’s Northern Cape province. Using its AXXIS™ electronic initiation system, BME was able to plan and execute a blast of 4,647 detonators. Just a few months earlier, the company had broken a previous record at the same mine by initiating 3,780 detonators in a single blast.

“The latest achievement involved a remarkable 535 t of emulsion explosive in over 2,300 blast holes requiring a total of more than 37,000 m of drilling,” Kobus Boonzaaier, BME Area Manager in the Northern Cape, said. “The resulting blast was able to move almost 2.3 Mt of rock within a matter of seconds.”

Boonzaaier highlighted that the advantage of these large blasts is that they allow mines to blast less often; this means less disruption and a more streamlined operation. The size of the blast was not the only factor to consider, however, as a quality blast must also optimise key outcomes like fragmentation, BME said.

“We were pleased to once again achieve good fragmentation with this blast, ensuring that the resulting particle size would facilitate efficient loading, hauling and comminution by the mine,” Boonzaaier said.

The mine has made use of a full blasting service from BME for the past five years, with BME providing its expertise through a team of over 20 blasters, operators and assistants.

BME’s emulsion explosives – combined with AXXIS electronic initiation system, electronic detonators, blast planning software and other accessories – have been helping break records at South African mines for over a decade. It has conducted even larger blasts in Australia and Zambia in recent years – in the coal and copper sectors, respectively.

SRG Global to help Red 5 blast off at Great Western gold mine

SRG Global has been awarded a term contract with Pit N Portal Mining Services to provide specialist production drill and blast services and explosives supply at Red 5 Ltd’s Great Western gold mine in Western Australia.

The term contract is expected to start immediately for an initial 12-month term.

Pit N Portal, a division of Emeco, was awarded the contract mining gig at Great Western back in October.

A satellite deposit located around 55 km from Red 5’s Darlot gold mine and processing facility, Great Western comes with a measured, indicated and inferred resource of 870,000 t grading 2.5 g/t Au for 70,300 oz of contained gold. The maiden proven and probable reserve totalled 437,500 t at 2.5g/t Au for 35,424 oz of contained gold.

Based on a proposed mining rate of between 30,000-40,000 t/mth of ore, the open pit is expected to be completed over a period of around 13 months, with plans to then access the underground orebody via a portal at the base of the pit, Red 5 said at the time.

In addition to the work on Great Western, SRG Global was also awarded a new three-year contract (with option for a further two years) with GFG Liberty OneSteel to provide engineered access solutions at the Liberty Steelworks site in Whyalla, South Australia.

David Macgeorge, Managing Director of SRG Global, said: “We are very pleased to have secured these two term contracts, adding to our recurring annuity earnings.

“The Pit N Portal contract was specifically targeted as it builds upon our mining services portfolio of high-quality growth commodities whilst diversifying SRG Global’s customer base.”

Blast Movement Technologies bolsters post-blast data acquisition with FED 2.0

Blast Movement Technologies, part of Hexagon, has released a new flight enabled detector to safely and expediently retrieve post-blast location data.

FED 2.0 is a specially fitted UAV that comes with improved detection depths of up to 12 m. By adhering to strict ‘stand-off’ guidelines, it enables the swift retrieval of BMM (Blast Movement Monitor) location data, post blast, without the need to walk the muckpile, according to BMT.

BMT released its first UAV detector in November 2019, establishing an alternate, semi-automated solution to retrieve BMM sensor data.

Like its predecessor, FED 2.0 is based on the DJI Matrice M600Pro flying platform, but now features an automated Winch mechanism to lower the detector closer to the surface and away from the main UAV body. This not only ensures greater detection depths but also lessens the interference from the motor and blades, according to BMT.

The Winch was developed in partnership with Australia-based, unmanned systems specialist, Insitu Pacific, a subsidiary of The Boeing Company. Insitu ensured the new winch technology worked seamlessly with the existing FED ground control software, as well as introducing several other user experience improvements, BMT said.

FED 2.0 features an automated flight control and customisable flight plan. It has a built-in GNSS receiver to enhance positioning information and a vertical and horizontal collision detection system. It can also resume the mission after low battery replacement from the point where it was suspended. The on-board computer allows for immediate processing of incoming data, ensuring access to the movement data while resolving safety and environmental considerations.

BMT CEO, Jacques Janse, said: “With many mines focused on recovering more ore quickly and safely, our FED 2.0 continues our journey towards an autonomous future. This safety aspect, along with the increased detection depths, opens up the ability to use our BMM system in more mines.”

North sets Ferrexpo on a course for ‘carbon neutrality’

Ferrexpo is used to setting trends. It was the first company to launch a new open-pit iron ore mine in the CIS since Ukraine gained its independence in 1991 and has recently become the first miner in Ukraine to adopt autonomous open-pit drilling and haulage technology.

It plans to keep up this innovative streak if a conversation with Acting CEO Jim North is anything to go by.

North, former Chief Operating Officer of London Mining and Ferrexpo, has seen the technology shift in mining first-hand. A holder of a variety of senior operational management roles in multiple commodities with Rio Tinto and BHP, he witnessed the take-off of autonomous haulage systems (AHS) in the Pilbara, as well as the productivity and operating cost benefits that came with removing operators from blasthole drills.

He says the rationale for adopting autonomous technology at Ferrexpo’s Yeristovo mine is slightly different to the traditional Pilbara investment case.

“This move was not based on reduction in salaries; it was all based on utilisation of capital,” North told IM. While miners receive comparatively good salaries in Ukraine, they cannot compete with the wages of those Pilbara haul truck drivers.

Ferrexpo Acting CEO, Jim North

North provided a bit of background here: “The focus for the last six years since I came into the company was about driving mining efficiencies and getting benchmark performance out of our mining fleet. This is not rocket science; it is all about carrying out good planning and executing to that plan.”

The company used the same philosophy in its process plant – a philosophy that is likely to see it produce close to 12 Mt of high grade (65% Fe) iron ore pellets and concentrate next year.

Using his industry knowledge, North pitted Ferrexpo’s fleet performance against others on the global stage.

“Mining is a highly capital-intensive business and that equipment you buy has got be moving – either loaded or empty – throughout the day,” North said. “24 hours-a-day operation is impossible as you must put fuel in vehicles and you need to change operators, so, in the beginning, we focused on increasing the utilised hours. After a couple of years, I noticed we were getting very close to the benchmark performance globally set by the majors.

“If you are looking at pushing your utilisation further, it inevitably leads you to automation.”

Ferrexpo was up for pushing it further and, four years ago, started the process of going autonomous, with its Yeristovo iron ore mine, opened in 2011, the first candidate for an operational shakeup.

“Yeristovo is a far simpler configuration from a mining point of view,” North explained. “It is basically just a large box cut. Poltava, on the other hand (its other iron ore producing mine currently), has been around for 50 years; it is a very deep and complex operation.

“We thought the place to dip our toe into the water and get good at autonomy was Yeristovo.”

This started off in 2017 with deployment of teleremote operation on its Epiroc Pit Viper 275 blasthole drill rigs. The company has gradually increased the level of autonomy, progressing to remotely operating these rigs from a central control room. In 2021-2022, these rigs will move to fully-autonomous mode, North says.

Ferrexpo has also been leveraging remotely-operated technology for mine site surveying, employing drones to speed up and improve the accuracy of the process. The miner has invested in three of these drones to carry out not only site surveys, but stockpile mapping and – perhaps next year – engineering inspections.

“The productivity benefits from these drones are huge,” North said. “In just two days of drone operation, you can carry out the same amount of work it would take three or four surveyors to do in one or two weeks!”

OEM-agnostic solution

It is the haul truck segment of the mine automation project at Yeristovo that has caught the most industry attention, with Ferrexpo one of the first to choose an OEM-agnostic solution from a company outside of the big four open-pit mining haul truck manufacturers.

The company settled on a solution from ASI Mining, owned 34% by Epiroc, after the completion of a trial of the Mobius® Haulage A.I. system on a Cat 793D last year.

The first phase of the commercial project is already kicking off, with the first of six Cat 793s converted to autonomous mode now up and running at Yeristovo. On completion of this first phase of six trucks, consideration will be given to timing of further deployment for the remainder of the Yeristovo truck fleet.

This trial and rollout may appear fairly routine, but behind the scenes was an 18-month process to settle on ASI’s solution.

“For us, as a business, we have about 86 trucks deployed on site,” North said. “We simply couldn’t take the same route BHP or Rio took three or four years ago in acquiring an entirely new autonomous fleet. At that point, Cat and Komatsu were the only major OEMs offering these solutions and they were offering limited numbers of trucks models with no fleet integration possibilities.

“If you had a mixed fleet – which we do – then you were looking at a multi-hundred-million-dollar decision to change out your mining fleet. That is prohibitive for a business like ours.”

Ferrexpo personnel visited ASI Mining’s facility in Utah, USA, several times, hearing all about the parent company’s work with NASA on robotics. “We knew they had the technical capability to work in tough environments,” North remarked.

“We also saw work they had been doing with Ford and Toyota for a number of years on their unmanned vehicles, and we witnessed the object detect and collision avoidance solutions in action on a test track.”

Convinced by these demonstrations and with an eye to the future of its operations, Ferrexpo committed to an OEM-agnostic autonomous future.

“If we want to get to a fully autonomous fleet at some stage in the future, we will need to pick a provider that could turn any unit into an autonomous vehicle,” North said. It found that in ASI Mining’s Mobius platform.

Such due diligence is representative not only of the team’s thorough approach to this project, it also reflects the realities of deploying such a solution in Ukraine.

“It is all about building capability,” North said. “This is new technology in Ukraine – it’s not like you can go down the road and find somebody that has worked on this type of technology before. As a result, it’s all about training and building up the capacity in our workforce.”

After this expertise has been established, the automation rollout will inevitably accelerate.

“Once we have Yeristovo fully autonomous, we intend to move the autonomy program to Belanovo, which we started excavating a couple of years ago,” North said. “The last pit we would automate would be Poltava, purely due to complexity.”

Belanovo, which has a JORC Mineral Resource of 1,700 Mt, is currently mining overburden with 30-40 t ADTs shifting this material. While ASI Mining said it would be able to automate such machines, North decided the automation program will only begin when large fleet is deployed.

“When we deploy large fleet at Belanovo and start to move significant volumes, we intend for it to become a fully-autonomous operation,” he said.

Poltava, which is a single pit covering a 7 km long by 2 km wide area (pictured below), has a five-decade-long history and a more diverse mining fleet than Yeristovo. In this respect, it was always going to be harder to automate from a loading and haulage point of view.

“If you think about the fleet numbers deployed when Belanovo is running, we will probably have 50% of our fleet running autonomously,” North said. “The level of capability to run that level of technology would be high, so it makes sense to take on the more complex operation at Poltava at that point in time.”

Consolidation and decarbonisation

This autonomy transition has also given North and his team the chance to re-evaluate its fleet needs for now and in the future.

This is not as simple as it may sound to those thinking of a typical Pilbara AHS fleet deployment, with the Yeristovo and Poltava mines containing different ore types that require blending at the processing plant in order to sustain a cost-effective operation able to produce circa-12 Mt/y of high-grade (65%-plus Fe) iron ore pellets and concentrate.

“That limits our ability in terms of fleet size for ore mining because we want to match the capacity of the fleet to the different ore streams we feed into the plant,” North said.

This has seen the company standardise on circa-220 t trucks for ore movement and 300-320 t trucks for waste haulage.

On the latter, North explained: “That is about shovel utilisation, not necessarily about trucks. If you go much larger than that 320-t truck, you are talking about the need to use large rope shovels and we don’t have enough consistent stripping requirements for that. We think the 800 t-class electric hydraulic excavator is a suitable match for the circa-320 t truck.”

This standardisation process at Poltava has seen BELAZ 40 t trucks previously working in the pit re-assigned for auxiliary work, with the smallest in-pit Cat 777 trucks acting as fuel, water and lubrication service vehicles at Poltava.

“The Cat 785s are the smallest operating primary fleet we have at Poltava,” North said. “We also have the Hitachi EH3500s and Cat 789s and Cat 793s, tending to keep the bigger fleet towards Yeristovo and the smaller fleet at Poltava.”

In carrying out this evaluation, the company has also plotted its next electrification steps.

“Given we have got to the point where we know we want 220 t for ore and 300-320 t nominally for waste at Yeristovo, we have a very clear understanding of where we are going in our efforts to support our climate action,” North said.

Electrification of the company’s entire operation – both the power generation and pelletising segment, and the mobile fleet – forms a significant part of its carbon reduction plans.

A 5 MW solar farm is being built to trial the efficacy of photovoltaic generation in the region, while, in the pelletiser, the company is blending sunflower husks with natural gas to power the process. Fine tuning over the past few years has seen the company settle on a 30:70 sunflower husk:natural gas energy ratio, allowing the company to make the most of a waste product in plentiful supply in Ukraine.

On top of this, the company is recuperating heat from the pelletisation process where possible and reusing it for other processes.

With a significant amount of ‘blue’ (nuclear) or ‘green’ (renewable) power available through the grid and plans to incorporate renewables on site, Ferrexpo looks to have the input part of the decarbonisation equation covered.

In the pellet lines, North says green hydrogen is believed to be the partial or full displacement solution for gas firing, with the company keenly watching developments such as the HYBRIT project in Sweden.

On the diesel side of things, Ferrexpo is also charting its decarbonisation course. This will start with a move to electric drive haul trucks in the next few years.

Power infrastructure is already available in the pits energising most of its electric-hydraulic shovels and backhoes, and the intention is for these new electric drive trucks to go on trolley line infrastructure to eradicate some of the operation’s diesel use.

“Initially we would still need to rely on diesel engines at the end of ramps and the bottom of pits, but our intention is to utilise some alternative powerpack on these trucks as the technology becomes available,” North said.

He expects that alternative powerpack to be battery-based, but he and the company are keeping their options open during conversations with OEMs about the fleet replacement plans.

“We know we are going to have to buy a fleet in the next couple of years, but the problem is when you make that sort of purchase, you are committing to using those machines for the next 20 years,” North said. “During all our conversations with OEMs we are recognising that we will need to buy a fleet before they have probably finalised their ‘decarbonised’ solutions, so all the contracts are based on the OEM providing that fully carbon-free solution when it becomes available.”

With around 15% of the company’s carbon footprint tied to diesel use, this could have a big impact on Ferrexpo’s ‘green’ credentials, yet the transition to trolley assist makes sense even without this sustainability benefit.

“The advantages in terms of mining productivity are huge,” North said. “You go from 15 km/h on ramp to just under 30 km/h on ramp.”

This is not all North offered up on the company’s carbon reduction plans.

At both of Ferrexpo’s operations, the company moves a lot of ore internally with shuttle trains, some of which are powered by diesel engines. A more environmentally friendly alternative is being sought for these locomotives.

“We are working with rail consultants that are delivering solutions for others to ‘fast follow’ that sector,” North said referencing the project already underway with Vale at its operations in Brazil. “We are investigating at the moment how we could design and deploy the solution at our operations for a lithium-ion battery loco.”

Not all the company’s decarbonisation and energy-efficiency initiatives started as recently as the last few years.

When examining a plan to reach 12 Mt/y of iron ore pellet production, North and his team looked at the whole ‘mine to mill’ approach.

“The cheapest place to optimise your comminution of rock is within the mine itself,” North said. “If you can optimise your blasting and get better fragmentation in the pit, you are saving energy, wear on materials, etc and you are doing some of the job of the concentrator and comminution process in the mine.”

A transition to a full emulsion blasting product came out of this study, and a move from NONEL detonators to electronic detonators could follow in the forthcoming years.

“That also led us into thinking about the future crusher – where we want to put it, what materials to feed into the expanded plant in the future, and what blending ratio we want to have from the pits,” North said. “The problem with pit development in a business that is moving 150-200 Mt of material a year is the crusher location needs to change as the mining horizons change.”

It ended up becoming a tradeoff between placing a new crusher in the pit on an assigned bench or putting it on top of the bench and hauling ore to that location.

The favoured location looks like being within the pit, according to North.

“It will be a substantial distance away from where our existing facility at Poltava is and we will convey the material into the plant,” he said. “We did the tradeoff study between hauling with trains/trucks, or conveying and, particularly for Belanovo, we need to take that ore to the crusher from the train network we already have in place.”

These internal ‘green’ initiatives are representative of the products Ferrexpo is supplying the steel industry.

Having shifted away from lower grade pellets to a higher-grade product in the past five years and started to introduce direct reduced iron pellet products to the market with trial shipments, Ferrexpo is looking to be a major player in the ‘green steel’ value chain.

North says as much.

“We are getting very close to understanding our path forward and our journey to carbon neutrality.”

CEA-Leti and Davey Bickford Enaex extend electronic initiation system collaboration

CEA-Leti and Davey Bickford Enaex, a worldwide leader in blasting solutions, have extended their joint laboratory project for another three years to, they say, “continue development of innovative radio-frequency communication systems that remotely control networks of high-tech wireless electronic detonators”.

The common lab will build on the partners’ recent success in developing an electronic initiation system without using surface wire that offers increased safety, flexibility and productivity to the blasting market. Like the earlier partnership, the ongoing work will take place in the frame of IRT Nanoelec, a Grenoble-based consortium focused on R&D in the field of semiconductor devices and ICT technologies.

The recently developed system consists of DaveyTronic® electronic detonators with bi-directional radio modules placed on the surface of an open-pit mine. The wireless network communicates with a digital blasting system located a few kilometers away from the blasting zone and is controlled by a wireless communication protocol specifically developed and optimised to ensure safe, reliable and synchronised operation of hundreds of detonating elements in open-pit mines. A key innovation of the new blasting solution is the wireless activation of the detonators, the companies say.

“Most mining operators around the world are striving to cope with the challenges of always guaranteeing the safety of their personnel during blasting operations and always searching for ways to increase productivity,” they said. “One of the ways to do that is limiting the time spent on the bench while priming the blast.”

The main safety benefit of a wired electronic initiation system is offering bi-directional communication between the detonators and the blasting equipment. The challenge for CEA-Leti and Davey Bickford Enaex was to remove the surface wire, generating a significant reduction of the operations on the bench (connecting, troubleshooting), while keeping this two-way communication.

“This new system, called DaveyTronic Edge, is paving the way to teleoperated/ automated priming operations,” the companies said.

Nicolas Besnard, Technologies and Systems Director of Davey Bickford Enaex, said: “As a global leader in blasting solutions, our company is committed to developing innovative pyrotechnic-initiation systems for mining and blasting companies around the world.

“Our collaboration with CEA-Leti has been a strong, two-way partnership that has helped Davey Bickford maintain its position in the blasting industry, and this extended common lab will help ensure we continue to offer our customers the latest in productive, safe and reliable systems in the digital era.”

Swan Gerome, Business Development Manager at CEA-Leti, said: “CEA-Leti’s expertise in radio technologies for industry, including radio-frequency system characterisation and channel-sounding tools, is a good match for Davey Bickford’s vision of providing digital technologies to the mining and blasting industries.

“This extension will open the way for us to continue innovating to bring new solutions to those markets.”

Orica to deliver tech and blasting services to Glencore’s Australia copper, zinc ops

Orica says it has been awarded a five-year explosives technology and services contract for Glencore’s Australia copper and zinc operations, effective January 2021.

Glencore, one of the world’s largest globally diversified natural resource companies, produces and markets a diverse range of metals and minerals, with its Australia copper and zinc operations including McArthur River Mine (Northern Territory), Lady Loretta Mine (Queensland), Mount Isa Mines (Queensland), Ernest Henry Mine (Queensland) and CSA Mine (New South Wales). Orica has an existing supply agreement with Glencore’s nickel and cobalt operations at Murrin Murrin, in Western Australia.

As part of the contract, Orica will deliver the full suite of explosives technology and blasting services across the Glencore copper and zinc operations in Australia, including supply of the fully wireless initiating system, WebGen™, BlastIQ™ digital blast optimisation suite of products and smart explosives delivery system, Bulkmaster™ 7.

This partnership further strengthens and expands Orica’s longstanding relationship with Glencore, the manufacturer of commercial explosives and innovative blasting systems said.

Orica Chief Executive, Alberto Calderon, said: “Glencore is a key global diversified customer, and we are delighted to be partnering with them across their Australian copper and zinc operations, integrating our most advanced technologies and solutions to solve their more complex operational needs.

“Glencore’s Ernest Henry mine in northwest Queensland was the first site in the world to trial and adopt our wireless explosives technology, WebGen. This deal shows Glencore’s confidence in our technology roadmap as well as aligning with their strategic vision for technology to deliver added value to their operations.”

Orica will work closely with Glencore to ensure uninterrupted supply to each operation, during the rapid mobilisation and transition period, it said.

Maptek brings fragmentation analysis option to PointStudio 2020

A powerful fragmentation analysis tool is a highlight of Maptek’s new PointStudio 2020 geospatial modelling and reporting software.

Better understanding of fragmentation can account for downstream cost efficiencies, with implications for many aspects of an operation, according to Group Product Manager Mine Measurement, Jason Richards.

“Sub-optimal fragmentation is immediately associated with inefficient excavation and haulage,” Richards said. “Undue damage to crusher parts is another impact. Excessive energy usage, crusher downtime due to wear and tear outside of planned maintenance and delivering out-of-specification product are directly linked to operational performance.”

PointStudio Fragmentation Analysis, released to customers this week, allows key performance indicators to be achieved consistently, Maptek says.

Individual rocks can be modelled from scanning of muck piles and draw points to provide accurate fragmentation S-curves from blasting or caving operations.

The new tool allows blast engineers and surveyors to quickly assess the condition of blasted rock, ideally before the material heads to the crushing process, while oversize rocks can be isolated for more effective haulage and processing, the company says.

“A simple scan-analyse-report workflow provides a table where rocks outside of spec can be identified and dealt with before the material gets anywhere near the plant,” Richards said. “A unique feature allows editing rocks or fines in the 3D view and characterising any that are not correctly defined.”

Visual and tabular reporting is immediately understandable so rock can be fed with optimal dimensions for crushing, according to the company.

Fragmentation analysis on 3D data is considerably more powerful and intuitive than methods that rely on analysing imagery. For operations with Maptek BlastLogic, the digital output can be used to compare actual with predictive fragmentation for continuous improvement of drill and blast processes.

While Fragmentation Analysis is a paid add-on in PointStudio 2020, many other new and enhanced features will be delivered to existing customers for free in the update, Maptek says.

One of the new options allows field surveyors using R3 laser scanners to complete scan registration immediately after scanning has finished.

“We’ve made it possible for fully registered scans to be imported from the scanner controller tablet into PointStudio,” Richards said. “Subsequent scans can then be registered with a single click as they are acquired.”

Surveyors can immediately start interrogation, analysis and modelling in PointStudio. An additional benefit derives from field access to aligned scans, allowing timely checks for survey coverage before moving to the next position.

Mine operations commit significant effort to the capture and measurement of as-built data for working faces and stockpiles, Maptek says.

“They can’t afford to let data inaccuracy and inefficient processing prevent them from getting full value from their survey data,” Richards added. “Bad data can lead to poor productivity and risks bad decisions based on incomplete information.”