Tag Archives: British Columbia

Komatsu Mining puts down roots in Western Canada with $40 m facility

Komatsu Mining has announced plans for the construction of a new facility to support the growth of its mining business in Western Canada, a region known for the oil sands industry, as well as significant coal operations.

The company plans to invest approximately $40 million to construct a 85,000 sq.ft (7,897 sq.m) sales and service facility in downtown Sparwood, British Columbia (artists impression shown), where the company has been operating for more than 30 years, it said.

Komatsu plans to break ground at the new site in early August, with construction to conclude by the end of 2020.

Steven Droste, Komatsu’s Regional Manager – Western Canada, said: “This facility will be a great new place of work for our employees while enhancing our capabilities, so we can continue to provide our customers unrivalled service delivery.”

Komatsu will continue to operate out of its leased facility in Sparwood until the new building is complete. The company purchased the 15 acre (6 ha) parcel for its new facility from the District of Sparwood and is working to prepare the land for development, it said.

Newcrest to apply ‘unique technical capabilities’ to copper-gold mine in BC, Canada

Newcrest Mining has entered into an agreement to acquire a 70% joint venture interest in Imperial Metals’ Red Chris copper-gold mine and surrounding tenements in British Columbia, Canada, for $806.5 million.

The deal will see Newcrest become Red Chris operator, in charge of deciding how to exploit the copper-gold porphyry open-pit mine.

Newcrest said the acquisition of Red Chris was “a measured entry” into North America and aligned with its stated strategic goals of building a global portfolio of Tier 1 orebodies where Newcrest can “deliver value through application of its unique operating capabilities”.

Red Chris comes with a mineral resource of 20 Moz of gold and 5.9 Mt of copper. The acquired property comprises 23,142 ha of land with 77 mineral tenures, five of which are mining leases, and sits within the traditional territory of the Tahltan Nation.

Newcrest Managing Director and CEO, Sandeep Biswas, said: “We are delighted to add this asset into the Newcrest portfolio. Following due diligence, we believe we can bring our unique technical capabilities to unlock the full value potential of this orebody in one of the premier gold districts in the world.

“We have identified a clear pathway to potentially turn this orebody into a Tier 1 operation. The geology of Red Chris is similar to our Cadia orebodies in Australia and we will be applying our considerable experience in exploration, open-pit mining, caving and processing to maximise the value of Red Chris and the opportunities in the surrounding region. We look at this opportunity in the same way as we do with Cadia, where we have proven we can create significant value from deep underground porphyry orebodies.”

Following the intensive due diligence process Biswas mentioned, Newcrest said it has a two-stage plan to deliver value from the acquisition:

Stage one will see the company apply its “Edge transformation approach” to the existing Red Chris open-pit mine and processing plant.

“Newcrest believes it can add significant value to Red Chris by applying the same Edge mind-set and approach that has led to significant operating improvements across all Newcrest operations over the last five years,” the company said.

Examples of where successful changes have been implemented to safely accelerate cash maximisation include process plant optimisation (debottlenecking, recovery uplifts, process control, improving concentrate quality), mine optimisation (improving orebody knowledge, grade control, fleet management system, mine planning) and supply chain cost reduction, according to Newcrest.

As part of this stage, Newcrest said it will initiate an extensional drilling programme.

“Newcrest intends to optimise the current open-pit mine plan and pursue initiatives to improve operational productivities and milling recoveries,” Newcrest said.

The current open-pit mine has an existing 11 Mt/y processing plant and associated infrastructure which allows ‘brownfield’ expansion options in the future, it added.

Stage 2 will see the company apply “industry leading technology”.

The company said: “Newcrest believes it can add significant shareholder value by applying technology to Red Chris that it has successfully applied at its other operations.”

Examples include block caving – “Newcrest believes the orebody has the potential to become a high margin bulk underground block cave. Newcrest will accelerate the necessary drilling and studies. Newcrest intends to conduct studies and review the ore reserve of the Red Chris operation to allow for reporting in accordance with JORC 2012 to take into account the potential transition to a future block cave operation.”

Coarse ore flotation could also be considered, the company said.

“Having demonstrated the recovery benefits of coarse ore flotation at Cadia, Newcrest will look to apply this technology to Red Chris,” Newcrest said.

And, then there is the application of one of the most popular technologies today: ore sensing and sorting, of which Newcrest said: “Positive results from trials underway at Telfer may lead to this technology being deployed at Red Chris.”

In terms of exploration, Newcrest said it would apply its experience in deep underground brownfield and greenfield exploration on the existing orebody and the broader land package to potential uncover more tonnes of copper and ounces of gold.

“Newcrest has identified opportunities to expand Red Chris’s mineral resources along strike and at depth in areas where there has been limited deep drilling to date. Historical shallow drilling indicates that there is also potential for further deep discoveries to be made in the larger tenement package.

“Newcrest will be targeting prospective regions beyond the current mine looking for further porphyry centres including small footprint, higher-grade gold-rich porphyry systems leveraging knowledge gained from Cadia which has similar geological features,” Newcrest said.

Red Chris, on the northern edge of the Skeena Mountains, commenced construction in 2012 and was completed in November 2014 for a total cost of C$661 million ($492 million). Commercial production commenced in July 2015 and, in the first nine month of 2018, the mine produced 20,320 t of copper and 29,569 oz of gold.

Teck sees big future for saturated rock fill water treatment technology

Teck Resources says the results from a saturated rock fill (SRF) project at its Elkview coal operations in British Columbia, Canada, show the technology has the potential to replace future active water treatment facilities (AWTF) and, further, reduce capital and operating costs for water treatment.

In 2018, the company successfully operated its first SRF project at Elkview, which has now been working for the past 12 months and “is demonstrating near-complete removal of nitrate and selenium from the feed water”, Teck reported in its 2018 financial results.

With the full-scale trial showing promising results, Teck is working to increase the capacity of the Elkview SRF to potentially reduce reliance on active water treatment, it said.

This approach has not yet received the necessary approvals and Teck said it continues to progress the construction of additional AWTFs to comply with the measures required by the Elk Valley Water Quality Plan, an area-based management plan approved in 2014 by the British Columbia Minister of Environment.

The plan establishes short-, medium- and long-term water quality targets for selenium, nitrate, sulphate and cadmium to protect the environment and human health, as well as a plan to manage calcite formation. In accordance with the plan, Teck has constructed and is operating the first AWTF at West Line Creek.

In the December quarter, Teck commissioned an additional treatment step to address an issue regarding selenium compounds in effluent from the West Line Creek AWTF. The facility is now operating as designed and the company has commenced construction on its next AWTF at Fording River Operations, which will use the same treatment process as the modified West Line Creek AWTF.

Teck said capital spending on water treatment in 2019 is expected to be approximately C$235 million ($178 million), including advancing a clean water diversion at Fording River, application of SRF technology at Elkview, construction of Fording River AWTF South, and advancing management of calcite and the early development of water treatment for Fording River North. “This compares to approximately C$57 million of capital spending on water treatment in 2018,” Teck said.

The company continued: “In our previous guidance, we estimated total capital spending for water treatment between 2018 and 2022 of C$850-900 million. We intend to complete construction of the Fording River South AWTF, currently under construction.

“If we are successful in permitting SRF projects to replace the Elkview AWTF and Fording River North AWTF, we estimate that total capital spending on water treatment during this period would reduce to C$600-650 million. If no reduction in AWTF capacity is permitted, overall capital in the same period would increase by approximately C$250 million over our previous guidance, as a result of engineering scope changes at the Elkview AWTF and an increased volume of water treated at Fording River North.”

Teck said it had presented regulators with evidence that SRFs are a viable technical alternative to active water treatment, and is working through a review process. “We expect that this process will result in a decision in the first half of 2019,” it said.

In the meantime, Teck continues to advance research and development, including the SRF technology.

“We estimate that over the longer term, SRFs will have capital and operating costs that are 20% and 50%, respectively, of AWTFs of similar capacity. If we are successful in replacing a substantial portion of active water treatment capacity with SRFs, we believe that our long-term operating costs associated with water treatment could be reduced substantially,” it said, adding that all of the foregoing estimates were “uncertain”.

MineSense front and centre in bulk ore sorting game

Having just commercialised its bulk ore sorting technology at Teck Resources’ Highland Valley Copper (HVC) operations in British Columbia, Canada, MineSense is looking to show the wider industry just how effective this pre-concentration process can be.

IM spoke with President and CEO, Jeff More, to find out more about the company’s ShovelSense and BeltSense technologies and how the Vancouver-based startup has been able to secure investment from the likes of ABB, Caterpillar and Mitsubishi.

IM: Can you explain in a little more detail how your ShovelSense and BeltSense solutions work?

JM: The base technology for both is X-ray Fluorescence (XRF) – a technology that has been around for some time. What we have done to this existing technology, which is quite unique, is three things:

  • One, we have extended dramatically the range of XRF. Traditionally XRF would almost have to be held to the surface of a rock to get accurate measurements. The range extension allows us to work in the shovel environment where we are working across metres of volume;
  • Second is speed. Our system is extremely fast. High speed analysis is required on our conveyor belt applications, but this is even more important in the shovel, where we’re measuring dynamically; as the material is flowing into the shovel, to get a representative reading, you have to be able to take very fast readings of the material as it is moving past the sensors;
  • The third is robustness. On a shovel, you are in a nasty environment from a shock and vibration perspective. We developed a system with sensitive components – the XRF itself, as well as the computing devices around it – that can stand up to that very high shock- and vibration-type environment.

IM: The most high-profile examples of the application of your ShovelSense technology have been at copper mines (HVC, in particular); is the detection technology particularly effective in these ores? Is it being trialled elsewhere?

JM: The current sensing we have with the XRF is very effective in a certain section of the periodic table, which nicely covers the major base metals. We’re focused on copper, nickel, zinc and polymetallic versions of those three. The fourth area of focus is iron ore.

We’ve selected copper as our first focus because of the size of the market and the geography. We have done most of our work in copper, but we now also have operating systems in nickel and zinc.

On a lab scale, the technology has been very effective in iron ore, but iron ore is a very different flow sheet, so we have purposely set it as our fourth market in what we call our primary clusters.

We have five mine site customers at the moment – three copper, one zinc-lead and one nickel-polymetallic.

We were very much focused on North America and, in particular, British Columbia for our first pilots and trials as it was quite easy for us to service in our back yard. The first international market was Chile, for obvious reasons in terms of copper production, and we now have a full MineSense entity and team operating in Chile and Peru.

We’re staggering the rest of our global expansion. We’re now quite active from a business development perspective in southern Africa – South Africa, Zambia, DRC – and have activity in Australia.

We have Systems installed at two different copper mines in British Columbia, one at a very large nickel-polymetallic complex in Sudbury, Ontario, and will have a fourth system operating in Alaska. We also have two mines, but four systems, operating in Chile. By the end of Q2, we will have another three systems operating in Chile.

We did all our development work for the system at Teck’s HVC operation and we’re now completely commercial there. We officially commissioned our first system in December, the second system is being commissioned as we speak and the third and fourth will be installed and commissioned in late-March. This will completely equip their fleet.

IM: Teck has previously said the use of ShovelSense has resulted in “a net measurable increase in the amount of ore (and the associated head grade)” it has available to feed its mill at HVC. Are these results in keeping with your expectations for the technology?

JM: Yes, absolutely. We base everything on, what we call, our value model. Very early in our engagement process, we set out a detailed model that calculates the profit improvement that mine will see – we did the same for Teck HVC.

We agreed on a target at HVC and are actually exceeding that estimate. Most importantly, Teck is also seeing that value and is estimating a great overall impact at that mine.

This is an abridged version of a Q&A to be published in the ore sorting feature in the March issue of International Mining.

New Gold after different funding strategy for C-Zone block cave at New Afton

New Gold has launched an internally-funded strategy for the development of another block cave at its New Afton gold-copper mine in British Columbia, Canada, as it looks to extend production through to 2030.

While further details of the strategy are expected later in January, a 2016 feasibility study on the C-Zone implied another 25 Mt of gold and copper ore reserves, equivalent to five years of mine life, could be added through the development of the new block cave.

Early last year, the company decided to defer development of the C-Zone in 2018, electing to evaluate opportunities “that have the potential to further optimise the C-Zone project”. Some of the opportunities identified, which were not featured in the feasibility study, included different tailings options (such as dry stack or thickened/amended tailings), as well as mining approaches based on operating experience in the B-Zone (including reassessing the amount of required underground development in the cave as well as optimising draw bell and pillar designs).

New Afton is a block cave mining operation able to produce 4 Mt/y of copper-gold ore for processing in a flotation plant. The deposit has been partitioned into three zones. The two nearest the surface cave readily and provide the initial mine production, while the deeper block is expected to require assistance in cave development.

An undercut and extraction level has been developed at each block, with ore hauled to ore passes and dropped to a tramming level for transport to the crusher. Ore from the deeper block is hauled by 50-t truck to the crusher level, from where it is conveyed to the mill via a 4.5-km long conveyor system.

Since the start of the current underground block cave operation in July 2012, exploration at New Afton has focused on extending the mineral resource below the current B-Zone block cave reserve. This work has resulted in the development of the C-Zone mineral resource, which was stated as 18.3 Mt at 0.8 g/t Au, 2.2 g/t Ag and 0.95% Cu as of December 31, 2017.

While investors will await further news of the internally-funded strategy for the C-Zone, the existing mine exceeded guidance in 2018. It produced 18,778 oz of gold in the December quarter for 77,329 oz in 2018, above expectations. Copper output also toppled expectations, with 20.8 MIb (9,435 t) and 85.1 MIb for the quarter and year, respectively.

And expectations are for these positive results to continue into 2019.

New Gold said in the December quarter results release that it had started an “ore segregation” strategy during the quarter, which has been further enhanced with the recent commissioning of an ore scanner. This is expected to increase overall mill grade, New Gold said.

Also, during the quarter, the initial phase of a two-phase mill upgrade to address supergene ore recovery was completed on time and on budget. This included the installation of pressure jigs and a magnetic separator with commissioning currently underway.

The second phase of the planned upgrade will be launched during the current quarter, with commissioning scheduled for the September quarter, the company said.

Rio Tinto starts up TBM at Kemano Second Tunnel project in Canada

Rio Tinto, together with the Cheslatta Carrier and Haisla First Nations, has celebrated the launch of the tl’ughus tunnel boring machine, a key milestone towards completing the Kemano Second Tunnel project for the BC Works aluminium smelter in Kitimat, British Columbia.

The 1,300 t machine was named by the Cheslatta Carrier nation after a giant snake that, according to legend, once bored through the mountains and landscape around the nearby Nachako Reservoir.

It will dig 7.6 km of tunnel through a mountain as part of a C$600 million ($458 million) project to enhance the long-term security of a clean power supply for the BC Works smelter.

Rio Tinto Aluminium Managing Director Altantic Operations, Gervais Jacques said: “Launching the tl’ughus in partnership with the Cheslatta Carrier and Haisla First Nations is an important milestone for our world-class aluminium operations in British Columbia. Our smelter in Kitimat produces some of the world’s lowest carbon aluminium and this project will enhance the long-term security of its supply of clean, renewable hydropower.”

Construction of the Kemano Second Tunnel project is expected to be complete in 2020. It will supply the Kemano powerhouse with water from the Nachako Reservoir, creating a back up to the original tunnel built over 60 years ago.

Frontier Kemper Aecon has been selected as the main contractor for the project, with Hatch being the EPCM. Herrenknecht has supplied the TBM.

The project will see some 250,000 m³ of tunnel rock excavated by the tl’ughus, while 8.4 km of an existing portion of the second tunnel (excavated in the 1990s) will be refurbished.

Phase 1 of the project was completed in 2013 to coincide with the Kitimat Modernisation project and involved construction of interconnections to the existing portion of the second tunnel.

The Cheslatta Nation selected the name for the tunnel boring machine – tl’ughus – as it shares many parallels with the Kemano second tunnel project, according to Rio.

Kitimat produced 433,000 t of aluminium last year, up from 408,000 t in 2016 and 110,000 t in 2015.