Tag Archives: bulk handling

Superior targets longer and wider material handling applications with new overland conveyors

Superior Industries is launching a new model of its Zipline® Overland Conveyors, expanding its range of modular products for longer and wider material handling applications.

Zipline conveyors target bulk producers looking for overland conveyors that require little or no pre-engineering for express deliveries and are designed for quick assembly in the field. With the addition of the new EXT Series, Zipline Conveyors are available in lengths up to 762 m and belt widths up to 1,220 mm.

Between the head and tail are a series of 12.2 m intermediate sections designed with 200 mm channel and 610 mm tall support stands. Standard Zipline Conveyor models are equipped with mechanical take-ups for shorter distances, but the new EXT Series includes a gravity take-up tower to accommodate longer-distance overland conveying, the company said.

All of the conveyor components – like the pulleys, idlers and scrapers – are also manufactured in-house.

“This unique advantage means higher quality, faster deliveries and all-inclusive support from Superior Industries,” the company said.

Martin Engineering goes virtual with conveyor training

With in-person training curtailed for the foreseeable future due to COVID-19 restrictions, Martin Engineering says it has developed an extensive array of tools to continue its tradition of educating those who maintain, manage and design conveyors for industrial operations.

The result is a wide range of globally-available options to help improve safety and efficiency, reduce maintenance expenditures and extend equipment life, ultimately contributing to greater profitability, it says.

“The pandemic has impacted our ability to teach traditional classes at customer sites,” PE Todd Swinderman, CEO Emeritus of Martin Engineering and an industry veteran with more than 40 years of hands-on experience, said. “But it doesn’t reduce the need for conveyor operators and facility managers to obtain the benefits and continuing education credits those sessions provide.”

In response to the restrictions that the virus has placed on face-to-face learning, Martin has created a series of interactive online modules based on the same non-commercial curriculum it has produced over the years. Designed to keep attendees engaged and organised into 90-120 minute segments, the virtual classes cover topics such as best practices for safety, fugitive material control and belt tracking. Upon completion, attendees are eligible to receive either Professional Development Unit (PDU) or Continuing Education Unit (CEU) credits.

“The Foundations™ online seminars deliver non-commercial, topic-specific problem-solving information that can be put to immediate use,” Swinderman said. “There’s no sales pitch, and even the most remote locations can take advantage,” he added.

Customer Development Manager, Jerad Heitzler, an instructor of Martin’s safety workshops since 2010, said: “Conveyors are one of the best productivity-enhancing tools available, but conveyor injuries cost employers millions of dollars annually. Because of the size of their material cargoes, the speed of their operation, and the amount of energy they consume and contain, conveyors have been shown to be a leading cause of industrial accidents, including serious injuries and fatalities. But injuries are preventable with the right training, preparation and safety precautions.”

According to Heitzler, the company’s preferred platform is Zoom, but its expert trainers also have experience with Google Meet, Microsoft Teams and Webex.

“Our platform has been built to increase attendee engagement as much as possible,” Heitzler added. “Many trainers don’t use the available platform features effectively, because they were thrust into online training as a result of the pandemic. But we’ve worked hard at using engagement features to increase learner participation, with options such as a raise hand button, chat, Q and A, screen sharing, white boards, private breakout rooms and polling.”

Heitzler said the Martin team has taught around 2,000 attendees using video conferencing since the onset of the virus.

“We’ve presented these modules to learners in coal handling plants, cement manufacturing, aggregate production and pulp and paper mills,” he said. “We’ve also provided training for industry consultants, service providers and engineering firms who design conveyors and plants.”

Swinderman estimates the firm has trained more than 50,000 miners, operators, maintenance staff and management personnel around the world.

There are two standard tracks: one for maintenance and operations personnel that stresses safe work practices and solutions to common conveyor problems, and one designed for technical and management personnel that emphasises the design and operation of conveyors for safety and productivity. In addition, Martin trainers and engineers can custom design programs not only for customers using conveyors but for those needing training on the application of industrial vibration, air cannons and silo cleaning.

“Both methods of training are highly interactive, effective and non-commercial, focusing on delivering timely information that can be put to immediate use,” Swinderman concluded.

Metso Outotec goes the distance with overland conveyor range

Metso Outotec says it has introduced a full range of overland conveyors for “economic and energy-efficient bulk material transportation”.

Designed for transporting bulk material in long distance mining applications, the overland conveyor solutions can be used at both open-pit and underground operations and, according to the company, offer the lowest total cost of ownership.

Lars Duemmel, Vice President, Bulk Material Handling Systems at Metso Outotec, said: “In mining and minerals processing applications, conveying is one of the most efficient and safest ways to transport bulk material. It is often referred as the backbone of the entire process.

“The robust design of our overland conveyors allows for capacities of up to 20,000 t/h, including over 5 km on a single flight for a seamless process. What is also important is that you can achieve power savings of up to 30% with the patented Energy Saving Idlers® (ESI).”

ESI, according to Metso Outotec, significantly reduces the overall rolling resistance on conveyor belts, leading to savings in the electrical power costs to operate the conveyor.

Duemmel added: “Thanks to our extensive process engineering capability and proven installations around the world, we are able to support our customers with complete end-to-end conveyor solutions.

“This includes concept studies and definitions for all types of terrains and route types with horizontal and vertical curves. Our expertise also covers post-installation services and maintenance, including a full range of accessories, belts and components featured in the recently launched Conveyor Solutions Handbook.”

Scrapetec keeps conveyor belts on track with newest component

Scrapetec has added to its range of conveyor components with the new PrimeTracker belt tracker, which, it says, eliminates problems associated with conveyor belt systems, including misalignment, abrasion and belt damage.

Thorsten Koth, Sales and Distribution for Scrapetec, explained: “For optimum performance of a conveyor system, it is critical that the belt always runs straight on the conveyor, without sideways movement. Our new PrimeTracker belt tracker has been designed to automatically guide a conveyor belt back into the correct straight-line position, to prevent costly downtime and component replacement.”

One advantage of the Scrapetec PrimeTracker is that it is always operates in the idling position, unless there is sideways movement of the belt, Koth said. This system corrects misalignment immediately by guiding the belt back into the correct position, with no damage or abrasion to the belt or tracker, he added.

“This is unlike conventional belt trackers that slide over the belt surface causing possible abrasion and belt damage – rather than adopting free rotation,” he said. “Conventional belt trackers, with tapered edges, never idle and are always in a braking mode.

“What’s also notable, is the cylindrical shape and pivot bush that allow this belt tracker to swing and tilt during operation and to always be in full contact with the belt. Added to this, the Scrapetec PrimeTracker has the same peripheral speed over the entire surface of the belt, where traditional crowned rollers have different speeds at the centre and edges of the system.”

Other advantages include easy installation, low maintenance requirements and protection of belt edges and structure of the conveyor belt, according to Scrapetec. A strong corrugated EPDM rubber hose protects this system from dust and sand, while the rubber pivot offers soft suspension of the tracker shaft, ensuring extended service life of the system, the company added. This system can be installed in front of every return pulley, above and below the belt.

Martin Engineering’s Mr. Blade service offering comes to US Mid-Atlantic region

The use of factory-trained, OSHA- and MSHA-certified experts for maintenance of bulk handling systems has taken another step forward as Martin Engineering establishes its newest Mr. Blade™ territory, serving the Mid-Atlantic region of the USA, the company says.

Introduced in 2015, the network is a “unique factory-direct service program”, delivering replacement belt cleaner blades, air cannon valves and other Martin products, specified and custom-fitted on-site and installed free of charge. Further, Martin service technicians will replace the main frame and tensioner of any belt cleaner as needed – also at no charge – as part of the Mr. Blade service relationship.

The new territory is part of a larger initiative to deliver factory-direct service to customers around the world. The Mr. Blade program is currently up and running in the USA, UK and Italy, with additional launches planned for next year. The company estimates that it is currently responsible for about 10,000 conveyor belts worldwide as part of its managed services program.

“Martin assures accurately-sized and professionally installed replacement blades that are matched to the specific application, providing optimum cleaning performance and service life,” the company said. “The company ensures customer satisfaction with its exclusive Forever Guarantee, which specifies that users will experience better cleaning, longer service life and lowest cost of ownership.”

Initial targets for the new territory will be facilities producing or handling sand, aggregate or cement.

Martin Engineering Senior Customer Support Specialist, Marty Smith, explained: “Plants in just about every industry are being asked to do more with limited resources. Maintenance personnel often don’t have the time or training to safely and efficiently perform belt cleaner inspections or air cannon service when needed. Customers really appreciate having a dedicated technician who makes regular visits, so employees can focus on core business activities.”

National Sales Manager for Wear Components, Alan Highton, says shifting the maintenance responsibility to a trusted partner through this kind of service relationship is one way that bulk handlers can continue to streamline their operations, improving the performance and safety of their bulk handling systems at the same time.

“Unlike most suppliers, we have chosen not to use third-party service providers, who typically don’t have the specific expertise to optimise these systems,” Highton said.

“The idea behind the Mr. Blade program is to deliver an unequalled level of service using highly efficient, regionalised systems,” he added. “Our technicians really get to know the conveyors they’re visiting, and with the monitoring systems we now have in place, we’re able to deliver proactive service in advance of a breakdown, replacing worn or failing components before they lead to an event that stops production.”

The company is also taking steps to help customers whose facilities have limited access during the COVID-19 pandemic by partnering with their maintenance staff to remotely train employees to effectively maintain their conveyor systems, offering guidelines on preventive maintenance, inspections and replacement blade ordering. Factory-direct technicians remain in close contact with periodic check-ins and provide key parameters to assure optimum performance, according to the company.

As part of the Mr. Blade service, Martin will install its Position Indicators on every primary cleaner free of charge to deliver remote monitoring for qualifying customers, allowing technicians and operations personnel to access detailed information on conditions and remaining service life via Wi-Fi or cell phone. The monitoring system alerts service personnel when re-tensioning or replacement is required, or when abnormal conditions occur.

Also included are regularly-scheduled inspections, adjustment and blade replacement as required on all Martin belt cleaning systems, as well as the company’s multi-point Walk-the-Belt audits based on worldwide best practices. All services are covered by the price of components, with no contract required, Martin claims.

Highton said the new territory will cover five states: Pennsylvania, New York, Maryland, New Jersey and Delaware. The company has begun serving customers with two technicians in specially-equipped vans, each outfitted with a fresh supply of 8 ft (2.4 m) blade lengths and equipped with a band saw, milling machine and all tools required to achieve a custom fit, accurate installation and precise tensioning.

The vans are designed as mobile business units, with technicians able to electronically enter and update data on each customer system right at the site. With a lifetime record of all belt cleaning equipment, customers will have access to details on the mounting assembly, tensioner and blade wear life, along with total annual cost information for budgeting purposes, the company claims.

Smith said: “Consistent attention to the cleaners helps deliver maximum performance and wear life, minimising component failures and unscheduled shutdowns. And, if there is a breakdown, service is available from MSHA-certified technicians capable of repairing any brand or style of cleaner. We can even supply retrofit blades to fit belt cleaners from any manufacturer.”

Martin Engineering on preventing accumulation in mining hoppers and chutes

Accumulation or blockages in storage systems and build-up in process vessels at mine sites can impede material movement, causing bottlenecks that interfere with equipment performance, reduces process efficiency and put a choke hold on an operation’s profitability, according to Martin Engineering.

Efficient material flow is a critical element of wet mining processes such as stoping, hydraulic mining and wet dredging, the company says. Poor material flow also raises maintenance expenses, diverting manpower from core activities and, in some cases, introducing safety risks for personnel.

“Most systems suffer from some amount of accumulation on vessel walls, which can rob plant owners of the storage systems in which they’ve invested,” Brad Pronschinske, Global Director of Air Cannons Business Group for Martin Engineering, said. “These buildups reduce material flow, decreasing the ‘live’ capacity of the vessel and the efficiency of the bulk handling system overall.”

Pronschinske said the accumulations tend to take one of several forms: arches, plugs, build-ups or “rat holes”.

He added: “If they become severe enough, flow problems can bring production to a complete stop.”

Although many plants still use manual techniques to remove buildup, the cost of labour and periodic shutdowns has led some producers to investigate more effective methods for dealing with this common production issue, according to the company.

Buildup versus throughput

Even well-designed processes can experience accumulations, which have a significant impact on output and profitability. Changes in process conditions, raw materials or weather can all influence material flow, and even small amounts of accumulation can grow into a serious blockage.

Beyond moisture content, there are many causes of raw material buildup on vessel walls, according to Martin Engineering.
Some metals contain naturally occurring magnetic properties; nearly 90% of the earth’s crust contains silica, and the sharp crystalline structure can contribute to buildup. Other factors can include the surface friction of the silo walls, the shape of the vessel, the angle of the slope and the size of the material being loaded.

Lost production is probably the most conspicuous cost of these flow problems, according to the company, but the expense can become apparent in a variety of other ways.

Shutdowns to clear the restricted flow cost valuable process time and maintenance hours, while wasting energy during re-start. Refractory walls can be worn or damaged by tools or cleaning techniques. When access is difficult, removing material blockages may also introduce safety risks for personnel. Scaffolds or ladders might be needed to reach access points, and staff can risk exposure to hot debris, dust or gases when chunks of material are released.

Many of the most common problem areas for accumulation are classified as confined spaces, requiring a special permit for workers to enter and perform work.

“The consequences of untrained or inexperienced staff entering a silo or hopper can be disastrous, including physical injury, burial and asphyxiation,” Martin Engineering says. “Disrupted material adhered to the sides of the vessel can suddenly break loose and fall on a worker. If the discharge door is in the open position, cargo can suddenly evacuate, causing unsecured workers to get caught in the flow. Cleaning vessels containing combustible dust – without proper testing, ventilation and safety measures – could even result in a deadly explosion.”

Getting professional help

“While some large facilities choose to make the capital investment to purchase their own cleaning gear to clear process equipment and storage vessels – as well as train personnel – others are finding it more sensible to schedule regular cleanings by specially-trained contractors,” Pronschinske says. “Given the costs of labour, lost time and potential risk to employees, this can often be accomplished for less than the total investment of in-house cleanouts.”

Safe, effective cleaning requires tools that work inside the silo
from the top, controlled by personnel outside

At one location, for example, the blockage was so severe in one silo that it had been out of use for years. While it took the outside contractor almost two weeks to fully evacuate the vessel, the process restored 3,500 tons (3,175 t) of storage capacity, according to the company.

At another facility, the crew was able to remove enough ‘lost’ product that the value of the recovered material actually paid for the cost of the cleaning.

“In short, regular cleaning of storage vessels can quickly turn into an economic benefit – not an expense, but rather an investment with a measurable return on investment,” the company says.

The costs of cleaning

There are a few types of equipment used for this purpose.

“One operates like an industrial-strength ‘weed whip’ rotating a set of flails against the material in the vessel,” Martin Engineering says. “This approach eliminates the need for confined space entry and hazardous cleaning techniques, typically allowing the material to be recaptured and returned to the process stream.”

The whip can be set up quickly outside the vessel, and it is portable enough to move easily around various bin sizes and shapes, according to the company. Typically lowered into the vessel from the top and then working from the bottom up to safely dislodge accumulation, the pneumatic cutting head delivers powerful cleaning action to remove buildup from walls and chutes without damaging the refractory.

Technicians lower the device all the way down through the topside opening, then start at the bottom of the buildup and work their way up, undercutting the wall accumulation as it falls by its own weight, the company explains. “In extreme cases, a ‘bin drill’ can be used to clear a 12 in (305 mm) pathway as deep as 150 ft (45 m) to start the process.”

Flow aids

Regular cleaning is one approach to keeping materials flowing freely by removing buildups from silo walls, but there are other flow aids which may reduce the need for cleaning or even eliminate it, according to Martin Engineering.

Industrial vibrators for bin & chute applications can reduce or even eliminate the need for cleaning

One method is through industrial vibrators designed for bin and chute applications.

“Electric vibrators are generally the most efficient, delivering the longest life, low maintenance and low noise,” it said. “The initial cost for an electric vibrator is higher than for pneumatic designs, but the operating cost is lower. Turbine vibrators are the most efficient and quietest of the pneumatic designs, making them well suited to applications in which low noise, high efficiency and low initial cost are desired.”

Air cannons (pictured) are another approach to maintaining good material flow, according to the company, particularly in larger vessels. Also known as an air blaster, the air cannon is a flow aid device that can be found in mining, coal handling and many other industries. Applications vary widely, from emptying bulk material storage vessels to purging boiler ash to cleaning high-temperature gas ducts.

“In the mining industry, air cannons are frequently specified to eliminate build-ups in hoppers, storage vessels, transfer chutes, bins and other production bottlenecks,” the company said. “They can also be found in mineral processing plants where metals are extracted using processes creating slurries and other wet, tacky tailings.”

Air cannon technology has been used in mining and material processing for many years, helping to improve flow and reduce maintenance, according to the company. The timed discharge of a directed air blast can prevent accumulation or blockages that reduce process efficiency and raise maintenance expenses.

In underground mines with potentially explosive dust, manual firing of cannons without the use of electrical solenoids is an option, the company says. “By facilitating flow and minimising build-up, air cannons help bulk material handlers minimise the need for process interruptions and manual labour,” Martin Engineering claims.

The two basic components of an air cannon are a fast-acting, high-flow valve and a pressure vessel (tank). The device performs work when compressed air (or some other inert gas) in the tank is suddenly released by the valve and directed through a nozzle, which is strategically positioned in the tower, duct, chute or other location. Often installed in a series and precisely sequenced for maximum effect, the network can be timed to best suit individual process conditions or material characteristics, the company says.

Pronschinske concluded: “The core message for mines and material processors is that they don’t have to put up with accumulation problems and the additional expenses they can cause. There are a number of approaches that can help resolve those issues before they turn into expensive downtime, lost material and safety hazards.”

Siempelkamp to supply conveyor belt press line to Fenner Dunlop’s Kwinana facility

Siempelkamp is to help Fenner Dunlop expand its Kwinana facility in Western Australia with the delivery of a new steel cord conveyor belt press line including a multi-cylinder press.

Fenner Dunlop, only last month, announced it would again expand this facility, with a third steel cord press line set to boost capacity by 50%.

With this new project, both companies continue their long-standing cooperation in the production of high-quality steel cord conveyor belts, Siempelkamp said. The scope of supply includes the whole production line, especially the multi-cylinder press, which provides, as with both existing press lines from Siempelkamp at this facility, an “outstanding pressure distribution” during the full curing process, it said.

“This state-of-the-art press technology enables our customer to cure conveyor belts from 5-50 mm thickness, providing a unique process accuracy and stability which cannot be achieved with other, traditional press concepts,” the company said.

The entire machine and process control technology has been developed, tested and implemented by Siempelkamp when it comes to hardware and software. Installation and start-up of the new press line is scheduled for 2021.

“With the new Siempelkamp press line, Fenner Dunlop once again demonstrates its commitment to the growing market for conveyor belts in Australia, a country rich in raw materials,” Siempelkamp said. “The use of conveyor belts, compared to the conventional ‘truck and shovel operation’, results in considerable CO2 savings when transporting the billions of tonnes of kilometres of bulk materials within the mines, between mine loading stations, and within the loading ports.”

Since 2006, companies of the Fenner Dunlop Group in Australia and the USA have been relying on Siempelkamp expertise in the area of presses for textile or steel cord conveyor belts, Siempelkamp said.

In 2011, the Fenner Dunlop Australia subsidiary placed an order for a complete steel cord line for conveyor belt production as part of an initial expansion of the Kwinana plant. With this first line, Siempelkamp said it set three records at once: the world’s largest conveyor belt press, the strongest press in the plastics and rubber industry, and the first multi-cylinder press for the Australian market.

“The multi-cylinder press concept provides plant operators with a particularly even pressure distribution which leads to a more stable process control and thus to more uniform product qualities,” Siempelkamp said. “With this new production line, as in both the existing press lines at this manufacturing facility, the creel is equipped with twice the required maximum number of steel cord let offs to provide a higher flexibility and a quick changeover with respect to the production settings.”

This design effectively eliminates several hours of downtime for loading and unloading of the creel and dramatically increases the number of usable production hours of the whole production line, according to Siempelkamp.

The new project was initiated by the intensive cooperation between the Australia Siempelkamp subsidiary, headed by Geoff Robson, and the Siempelkamp sales team in Krefeld, Germany. Negotiations and design were conducted during COVID-19 lockdowns.

Steffen Aumüller, Sales Manager at Siempelkamp, said: “With this order, we are pleased to continue a successful co-operation in a special application and to support Fenner Dunlop Australia, member of the Michelin group, with our technology.”

Fenner Dunlop ACE wins overland conveyor contract from Anglo American

Fenner Dunlop ACE has been contracted to deliver an overland conveyor system for Anglo American’s Aquila coal project in Queensland, Australia.

Aquila is an underground hard coking coal mine near Middlemount, which will extend the life of Anglo American’s existing Capcoal underground operations by six years. It comes with an expected capital cost of $226 million (Anglo American share), with first longwall production of premium quality hard coking coal expected in early 2022, according to Anglo.

Tyler Mitchelson, CEO of Anglo American’s Metallurgical Coal business, has previously said Aquila will become one of the most “technologically advanced underground mines in the world”.

Under the new contract award, Fenner Dunlop ACE will undertake the complete design, supply and installation of the ACV002 Overland Conveyor. Works will include the overland structure, belting, electrics and an elevated stacker to load coal onto the site stockpile. Several conveyor components, including mechanical supply, electrical supply and belting, will be manufactured in Australia.

Brendon Harms, Regional Manager ACE QLD, said: “After delivery of the initial underground development works, we are very excited to be working on this project. We believe we have created a culture of delivering on our promises. Completing the design, supply and installation give us a great opportunity to ensure effective conveyor operation for our client.”

Fenner Dunlop ACE will also be responsible for the complete install and commissioning of the overland conveyor, providing even further responsibility and ownership for the project. The overland conveyor project is expected to be commissioned in the second half of 2021.

Fenner Dunlop presses ahead with Western Australia expansion plans

Fenner Dunlop is to once again expand its Kwinana manufacturing facility in Western Australia, with a third steel cord press line set to boost capacity by 50%.

Since opening the A$70 million ($50 million) manufacturing facility in Kwinana, in 2009, the company has looked to progressively expand its capabilities in line with market demand.

The original facility, built specifically to produce steel cord belting, represented, at the time, the largest investment in conveyor belting manufacturer ever made in Australia by any company, according to the company.

In 2013, an additional A$20 million was invested to install a second press line to double the plant’s production capacity and increase the Kwinana workforce by 30%.

“Australian manufacturing has survived many challenges over the past decade,” the company said. “The COVID-19 crisis in 2020 has demonstrated the value of Australian manufacturing to the economy and to the mining sector in particular.

“While other companies are contracting and moving their manufacturing operations offshore, Fenner Dunlop continues to support the local economy and is proud to be the largest conveyor belt supplier in Australia and the only company to manufacture the complete range of conveyor belts for all mining applications locally.”

Today the facility houses two of the world’s largest steel cord press lines and has the capability to produce steel cord and rubber ply belting up to 3,200 mm wide and up to 50 mm thick.

Steve Abbott, Chief Operating Officer, said: “Kwinana is close to its main customers, allowing us to provide a quality product with reduced lead times while keeping the investment in Western Australia.

“Our customers have the convenience of dealing with a global business, supported by a state-of-the-art conveyor belt manufacturing facility in their backyard and the assurance of technical support that understands the local operational environment.”

These customers include Rio Tinto, BHP and many more.

Fenner Dunlop says it is once again partnering with Siempelkamp to commission the third line, which is the finest multi-piston press and associated equipment in the world, continuing the longstanding partnership in the production of high-quality conveyor belts.

The third line will increase the plant‘s capacity by a further 50%, and additional investment will support the efficient manufacture of fabric conveyor belts for Western Australian customers, the company added.

Abbott said: “The plant expansion is part of our longer-term strategy, following the plant opening in 2009 and the initial expansion in 2013. While the expansion is a reflection of our success, it allows us to maintain our responsiveness in quoting, production and delivery to meet the constantly changing requirements of our customers.”

The A$23.5 million investment is part of Fenner Dunlop’s commitment to grow its conveyor belt production to meet the increasing demand in Western Australia, it said.

The manufacturing plant also incorporates a testing and R&D laboratory to ensure all work is done to the highest quality and safety standards and all systems are under constant review and continual improvement.

Site work is scheduled to start in March 2021 with the commissioning in December 2021. The new press line will start full production in January 2022, according to the company.

ScrapeTec-Trading boosts conveyor belt product flow with AirScrape

A new side sealing system for belt conveyors patented and manufactured in Germany is reducing material spill, dust formation and explosion hazards at transfer points and other critical sections in the conveyor chain, according to ScrapeTec-Trading.

The contact-free AirScrape® conveyor belt skirting system hovers freely above the conveyor belt, meaning skirt friction and belt damage is eliminated and service life extended, the company says.

Thorsten Koth, Sales Director, Scrapetec-Trading, said the system, which encompasses inward facing, hardened-steel diagonal blades, operates according to a new principle where it hovers 1-2 mm on the left and right side above the conveyor belt.

“These blades deflect larger particles inwards, while using the air flow of the conveyor belt and conveyed material to create an inward suction, flowing any dust and fine particles back into the product flow,” Koth said. “Through these diagonally fitted blades and the speed of the running belt, air is drawn from the outside inwards. As a result, neither the dust nor material can escape.”

Conventional skirting is pressed against a conveyor belt to keep dust and material in the middle of the belt, according to Koth. After a period, wear of the skirting and belt can be so severe that material and dust escapes, he said, adding that material spillage at transfer points needs to be removed and regular maintenance of belt skirting and transfer points is necessary.

“With the AirScrape dust-free and contact-free side sealing system for belt conveyors, there is no skirt contact and therefore no belt wear or damage,” he said. “Motor power requirements are reduced as there is no belt-skirt friction and, because there is continuous skirting with no gaps, product loss is minimal.

“Studies show that even three years after installation and with continuous use in harsh conditions, the AirScrape system hardly shows any signs of wear. Operational costs are also reduced because there is no need for spillage collection, regular maintenance, or replacement parts.”

This system comes in pairs of left and right hand two metre, inter-connectable pieces to form any required length, and is available in three different base widths of 100 mm and 55 mm to suit various belt widths and chute sizes. For flexibility on site, this system is completely extendable, according to the company.

AirScrape is fitted using spacers, floating the blades just above the belt, and is attached to the outside of the chute by using existing skirt clamps or a bolt and nut system. It is longitudinally adjustable to follow the contours of conveyor belt rollers and the belt trough angle.

This durable system consists of non-flammable and anti-static polyurethane materials and blades made from Hardox/stainless steel, the company said. FDA-approved materials are also available for specific conveyor handling applications.

Designed and manufactured in Germany by ScrapeTec Trading, the AirScrape system is available from BLTWORLD throughout Africa and the Indian Ocean Islands; from Grupo-ISC throughout South America and from Scrapetec-Trading for the rest of the world.