Tag Archives: bulk handling

Martin Engineering identifies and addresses conveyor idler issues

On any belt conveyor system that moves bulk materials, the belt must run straight and true to maximise its life, minimise fugitive material and safety hazards, and achieve high system efficiency, Martin Engineering says.

There can be many consequences of a mistracking belt, but all result in higher costs and increased maintenance. Even a slight belt misalignment can lead to a variety of issues, from small annoyances to full-blown catastrophes.

The most obvious effects include spillage and dust that require personnel to do cleanup – unproductive work that introduces risks from activities in close proximity to the moving conveyor. Spillage from non-centred cargo often gets into idlers and pulleys, reducing bearing life and causing them to seize, leading to friction damage on the belt and potentially starting a fire.

A misaligned belt can also come in contact with the stringer, causing fraying, shredding or splice damage. Great lengths of valuable belting can be destroyed with surprising speed, and even the support structure itself can be damaged, Martin Engineering says. A compromised bracket or support can cause a catastrophic idler failure, which could damage other components of the system and require extensive downtime to repair. Further, there is potential for injury from a damaged belt or loose idler, not to mention the increased exposure to injury from too frequent a need to clean.

“I’ve been working around conveyors for 20 years, and I’ve seen thousands of belts,” Martin Engineering Process Engineer, Dan Marshall, says. “I’ve seen just about every problem that can be caused by a mistracking belt, but one thing I’ve never seen is a belt that runs true right out of the box. All conveyors, no matter how well designed and built, have some belt wander.”

A wide variety of circumstances can lead to mistracking, and operators have tried many things to correct the alignment. Some have elected to place an obstacle such as a block of wood in the belt path, so it won’t travel too far out of line. This occasionally improves the situation, but more often it’s just temporary and the belt will eventually slice through the obstacle.

Many operators have realised that pivoting an idler is a quicker and more effective way to steer a belt. This common approach is called “knocking an idler”, striking it with a hammer to move it slightly and realign the belt (see below).

Equipment manufacturers have also designed components to help align a belt, and these solutions can be successful in specific applications. They include specially-shaped rollers, angled idlers and devices that apply pressure to the belt edge to push it back in line.

“While these mechanisms can improve a belt that’s consistently off-centre in one direction, they do not react to dynamic belt movement, meaning that they don’t correct intermittent belt wander,” Marshall continued. “To combat such changing conditions, engineers designed the tracking idler. Unlike the edge correction approach, the device senses belt movement in either direction, and pivots the idler slightly to steer the belt back into position. It doesn’t apply a great deal of force to the edges, which can damage a belt and splices. When the belt is running true, it remains centred, and when it senses a misaligned condition, it gently corrects the belt.”

Unfortunately, to accommodate limited space availability, tracking idlers typically have short sensing arms, according to Martin Engineering. This requires a fairly large belt displacement to create a small movement of the idler. While these designs do tend to improve tracking, there are limits to how much correction they can deliver, and short sensing arms can actually pinch a belt if the idler pivots too far. To combat this, some operators choose to “tie off” a tracking idler to limit its movement. While the practice can help preserve the belt, it doesn’t address significant mistracking, the company says.

To overcome the limitations of existing belt alignment devices, Martin Engineering has invented and patented a Multi-Pivot Belt Tracker, which employs sensors, pivoting idlers and geometry to align a wandering belt. The sensors avoid pinching the belt, and the engineered geometry amplifies any detected misalignment to create a greater pivot.

Multi-Pivot Belt Trainers (see photo at the top) use longer arms than other designs, positioning the guide rolls further from the pivot roller, as well as closer to the belt edge, according to the company. The closer proximity allows guide rolls to sense very slight misalignments and make immediate corrections. Rather than waiting for a powerful mistracking force, the longer arms require considerably less pressure to move the pivot roller. The result is better correction with no pinch points and less wear on conveyor and tracking equipment, for longer and more efficient service life, Martin Engineering says. Specific designs are available for both the load-carrying belt path and the return run.

“Installing trackers is the economical solution, but operators should do a full analysis and consider also addressing other causal issues,” Marshall added. “By focusing solely on belt alignment, plant personnel may miss other opportunities to increase production and relieve some of the burdens on their system.”

Keeping the belt centred and moving quickly is the key to high production, controlled operating cost and a safer workplace.

“Misalignment causes downtime and costs money,” Marshall concluded. “But nothing causes more downtime and expense than a destructive belt fire or other catastrophe as a result of inattention to mistracking problems.”

Metso Outotec aims for higher capacities as ore sorting offering develops

The entry of Metso Outotec into the bulk ore sorting space arguably heralds the beginning of a new stage of market adoption – one that is focused on significant throughputs across multiple commodities.

In May, the mining OEM announced a collaboration agreement with Malvern Panalytical, a company that has been using Pulsed Fast Thermal Neutron Activation (PFTNA) technology onboard its cross-belt analysers to analyse and help divert ore and waste streams with improved accuracy.

Up until that announcement, Metso Outotec had mooted the benefits of bulk ore sorting in several industry articles. On the smaller scale, it had also renewed its ongoing agreement with particle ore sorting major player, TOMRA.

The company said its agreement with Malvern Panalytical, which has previously worked on bulk sorting projects with Anglo American among others, brought together its expertise in crushing and bulk material handling solutions with Malvern Panalytical’s ore analysis nous to offer an industry-leading portfolio of solutions for bulk ore sorting.

Rashmi Kasat, Vice President, Digital technologies at Metso Outotec, said in the press release that the pact with Malvern Panalytical would allow the company to meet the industry’s increasing sustainability and resource efficiency needs in an enhanced way in the early comminution stage.

“Sensor-based bulk ore sorting and data-driven analysis upgrades low grade or waste stockpiles, making them economical and far less energy-intensive to treat,” she said.

There are obvious positive benefits up- and down-stream of sensor-based sorting too, with the ability to carry out a low-cost mining method (upstream), as well as reduced capital investments in downstream equipment already shown with early-adopter projects.

That is before considering the relative energy and water reduction requirements that come with applying the technology.

Kasat later told IM that the company’s existing portfolio of material handling modules, crushing stations or mobile crushing equipment, as well as bulk material handling solutions, already “complement” the concept of bulk sorting.

“The addition of the bulk sensor is easily achieved,” she clarified. “The diversion mechanism will be included as well to be able to offer the whole plant out of one hand.”

With crushing stations – at least in the in-pit crushing and conveying (IPCC) space – that can go up to 15,000 t/h (see the company’s Foresight™ semi-mobile primary gyratory station), the prospect of Metso Outotec making a concerted effort to get into the bulk ore sorting space bodes well for the rising throughputs of projects.

NextOre recently claimed it had commissioned the world’s largest bulk ore sorting system at First Quantum Minerals’ Kansanshi copper mine in Zambia. This installation, which uses the company’s magnetic resonance technology, comes in at a 2,800 t/h-rated capacity.

Scantech, meanwhile, recently confirmed it has a GEOSCAN GOLD installation using prompt gamma neutron activation analysis technology for bulk sensing/sorting up and running that uses a diversion system at conveyed flow rates of more than 6,000 t/h.

Kasat, without naming a range, confirmed Metso Outotec was targeting “higher capacities” in line with the sensors available on the market. She also clarified that the agreement with Malvern Panalytical was “non-exclusive”.

“We will choose all our sensor/analyser partners strategically,” she explained. “Malvern Panalytical has a leading position and history in this field with proven technology for ore sensing. We will leverage our and their Tier 1 position in the industry for our bulk ore sorting offering.”

Malvern Panalytical uses Pulsed Fast Thermal Neutron Activation technology onboard its cross-belt analysers to analyse and help divert ore and waste streams with improved accuracy

As the type of sensor to be employed varies based on several factors including mineralogy, plant capacity, application of bulk ore sorting, etc, Metso Outotec will identify the right partners for the right need, she explained.

The major constraints for these sensors are often measurement times and sensor penetration, according to Kasat.

“There are very few sensors out there that can do sensing of a 500-mm-deep bed of rock on a conveyor belt, moving at 5-6 m/s,” she said. “But our current and future prospective partners are working on developing the technologies to reduce measurement times without compromising the accuracy of measurement.”

The mining OEM is looking to, in most cases, provide ‘plug and play’ flowsheets for bulk ore sorting and then carry out the required customisation per sensor.

This plan reinforces Kasat’s assertion that there is no ‘one-size-fits-all’ concept in bulk ore sorting applications.

For new projects, the process could see the company start with metallurgical testing, progress to mobile/fixed pilot plants in the “backyard” to test the accuracy of the sensors for the given application, and then find the right solution for the customer’s use case.

Renato Verdejo, Business Development Lead for Bulk Ore Sorting at Metso Outotec, added: “For existing plants, we will install the sensor over the belt conveyor and analyse the results after selecting the right sensor for this sorting application.”

Metso Outotec intends to focus on major commodities like copper, iron, nickel and gold, among others, with applications such as waste/ore sorting, low grade re-crushing and beneficiation process optimisation.

Within this wide remit – and in line with its non-exclusive agreements with Malvern Panalytical and TOMRA – the company is also considering the combination of both bulk and particle sorting in flowsheet designs.

Metso Outotec, in 2021, renewed its ongoing agreement with particle ore sorting major player, TOMRA

“The combination of the superior throughput of a bulk application with the selectivity of particle sorting in a rougher-scavenger setup is something that can bring sorting to high volume mines in the future,” Kasat said.

“Plant concepts and flowsheets have already been conceptualised and we expect the first deliveries to be in pilot stations to test the sensors on site,” she added, saying that the tonnage requirements for bulk ore sorting sensor validation meant a bulk sensor would have to be piloted in the field to get statistically meaningful data about the properties of the deposit.

Metso Outotec’s crushing system offering will form the “base” for these solutions, with ore sorting optionality available to all customers, she said.

This sensor-based optionality also overlaps with another in-demand part of Metso Outotec’s business: IPCC.

The company’s dedicated team in Germany are responsible for this area, developing projects backed by comprehensive studies.

They – like most of the industry – are aware of the potential application for sensor-based ore sorting in IPCC projects.

Markus Dammers, Senior Engineer of Mine Planning for Metso Outotec and one of the team members in Germany, said there were applications for both bulk and particle sorting in IPCC applications, with the former likely integrated after primary crushing and the latter after secondary/tertiary crushing.

“Bulk ore sorting in an IPCC application should be integrated after primary crushing in order to recover marginal material determined as waste in the block model, or reject waste from the ore stream,” he said.

Bulk ore sorting in an IPCC application should be integrated after primary crushing in order to recover marginal material determined as waste in the block model, or reject waste from the ore stream, according to Markus Dammers

If integrated after secondary or tertiary crushing, it becomes less effective, with the ore’s heterogeneity decreasing every time the ore is rehandled, transferred, crushed, blended, etc.

“In this manner one can take advantage of the natural variability in the deposit, rather than blending it out, with bulk ore sorting,” he said.

After secondary and tertiary crushing, particle sorting may be applied as a “standalone or subsequent ‘cleaner’ process step”, he added.

With Metso Outotec open to the inclusion of ore sorting in fully-mobile, semi-mobile and stationary crushing stations within an IPCC context, the company has many potential customers – existing and new – out there.

And that is just in IPCC applications.

The company also has hundreds of crushing stations on fixed plant installations that could represent potential sorting opportunities.

Metso Outotec, on top of this massive install base, has a few advantages over traditional ore sorting vendors in that it understands the plant that goes around the analysis and diversion process associated with ore sorting; knows how important uptime is to its customers; and, through sophisticated modelling, realises what impact changes in the flowsheet will have up- and down-stream of such equipment.

“The key point here is to have all the equipment to handle and process the ore to feed the sorter and, later, having the technology to divert the material and retain the availability of the plant without changes,” Kasat said.

Energised by its Planet Positive aims of responding to the sustainability requirements of its customers in the fields of energy or water efficiency, emissions, circularity and safety, the company is now ready to flex its processing plant muscles to increase the industry’s adoption of bulk and particle sorting technology.

BEUMER Group develops hybrid conveyor technology for ports

BEUMER Group has responded to the changing demands of dry bulk customers with two new products that leverage its existing expertise in pipe and troughed belt conveying technology.

Speaking at a recent virtual media event, Andrea Prevedello, CEO of BEUMER Group Austria, announced the new additions under the U-Shape conveyor family.

Leveraging the advantages of pipe conveyors and troughed overland belt conveyors, the U-Shape conveyor enables an environmentally friendly and efficient operation in port terminals, BEUMER Group said. The design allows the implementation of more narrow curve radii than a troughed belt conveyor with higher mass flows than a pipe conveyor, all with dust-free transport, the company says.

The company explained the hybridisation of the two: “The troughed belt conveyors allow high mass flows even in case of heavy and robust materials. Their open design makes them suitable for coarse materials and very large volumes.

“The pipe conveyors, on the contrary, present other specific advantages. The idlers form the belt to a closed tube protecting the material transported against external influences and the environment from emissions such as material loss, dust or odours. Partition plates with hexagonal cuts and idlers in a staggered arrangement keep the tube shape closed. The pipe conveyors allow the implementation of more narrow curve radii and larger angles of inclination than open troughed belt conveyors.”

With requirements changing – the quantities of bulk materials growing, the routing becoming increasingly complex and environmental considerations rising – BEUMER Group found the need to develop the U-Shape conveyor.

“In this solution, a special idler configuration brings the belt in a u-shape,” it said. “Thus, the bulk material reaches the discharge station. An idler configuration similar to that for the troughed belt conveyor is used for opening the belt.”

Bringing together the advantages of open troughed belt conveyors and closed pipe conveyors, conveyed material is protected against external influences such as wind, rain or snow; and the environment against possible material loss and dust.

Within the family are two products that offer higher curve flexibility, higher capacity, bigger lump size allowance, no spillage and reduced power consumption, according to Prevedello.

The T-U-Shape conveyor is a U-shape conveyor designed like a normal troughed belt conveyor, but comes with a 30% reduction in width, allowing the ability to take on tighter curves, Prevedello says. This looks to have many applications in tunnelling applications.

The P-U-Shape conveyor, as the name would infer, is derived from the pipe conveyor, but offers 70% higher capacity with the same width and 50% higher lump size allowance, Prevedello says, explaining that it could allow BEUMER Group to consider the use of pipe conveyors in space-constrained environments.

New installations will obviously be targeted as part of this new product launch, but Prevedello says there are both greenfield and brownfield application possibilities with these new conveyors.

The T-U-Shape conveyor had more ‘new’ installation opportunities in tunnelling applications, he said, with the tight turning radii benefits allowing for small installations in tunnels.

With many ports shifting focus away from coal and handling different materials, the P-U Shape conveyor’s increased capacity and higher lump size flexibility could be of benefit in brownfield applications, he added.

“The ports are facing the challenges of dealing with new materials, so adapting what they have is important here,” he said.

Superior finishes construction of ‘world’s largest telescopic radial stacking conveyor’

Superior Industries Inc has completed design and manufacturing work on what it considers to be the world’s largest telescopic radial stacking conveyor.

The brand-new TeleStacker® Conveyor model is a 48-in-wide by 210-ft-long telescoping conveyor (1,220 mm x 64 m) capable of building 425,000 t stockpiles.

Superior says the record-breaking stacker will be used to unload dry bulk ships along the Atlantic Coast in Florida.

Operators at the port will take advantage of the TeleStacker Conveyor’s PilePro™ Automation. This Superior-designed-and-supported system automatically controls the stacker’s actions while building partially- or fully-desegregated stockpiles. Some popular features include pile volume reporting, maintenance triggers and diagnostics screens, the company said.

In 2022, Superior is celebrating 25 years of manufacturing its famous TeleStacker Conveyor. During that time, the conveyor has earned a reputation as the best tool for defeating costly material segregation while bulk stockpiling, the company said.

Martin Engineering compiles conveyor operation, safety educational resource

Martin Engineering, a leader in conveyor accessories and bulk material handling solutions, has launched what it says is a comprehensive digital educational resource for conveyor operation and safety.

The online Foundations™ Learning Center draws from the collective knowledge and expertise gathered over nearly 80 years solving bulk handling challenges. Aimed at apprentice technicians and experienced engineers alike, the non-commercial information is offered at no charge and is accessible by computer, tablet, or smartphone.

An extension of the Foundations training curriculum, the Learning Center uses a mix of text, photos, videos, webinars, online events, and live experts available to answer questions. The result is a unique central hub for industry professionals of all knowledge levels to use as a resource for building a deep understanding of material flow and safe, efficient conveyor operation, Martin Engineering says.

Not everyone learns by reading a textbook or following a lecture, so we set up the Learning Center as the place to go for all things conveyor and bulk handling for all types of learners,” Jerad Heitzler, Foundations Training Manager and curator of the Learning Center, said. “Technology allows us to accommodate different learning styles by offering several avenues to the same knowledge. The centre is designed in categories to provide easy access to the resources and organised so that people can find what they need quickly.”

The Learning Center is an online portal where plant operators, managers, and supervisors can send members of their teams to build their understanding of every aspect of conveyor operation and safety practices. The platform provides visitors with immediate solutions that are applicable and actionable, regardless of the equipment manufacturer. It is also a place to learn about the latest technologies, techniques, and compliance measures.

Building from its comprehensive training resources Foundations, The Practical Resource for Cleaner, Safer, More Productive Dust & Material Control and Foundations for Conveyor Safety, the Learning Center has been modelled on decades of knowledge from Martin’s experienced team of engineers and field technicians in every corner of the bulk materials handling industry. To start with, the creators have focused on the basics of conveyor operation and safety, with more advanced subject matter being added regularly.

The Learning Center resources supplement and enhance Martin Engineering’s extensive Foundations training program. The in-person training program combines the hands-on instruction and personal attention found in a classroom setting with the Learning Center technology, the textbook, and comprehension testing.

The modules of the Learning Center are split into nine categories:

  1. Material carryback & belt cleaning
  2. Dust management
  3. Material spillage
  4. Belt conveyor safety
  5. Conveyor belt & component damage
  6. Conveyor belt mistracking
  7. Material flow problems
  8. Belt conveyor system maintenance
  9. Basics of belt conveyor systems
Once the category is chosen, the learner is greeted with the core issues related to the module and examples of best practicesVideo overviews are immediately available to introduce the subject. The navigation bar to the right of each module page provides a detailed walkthrough of the subject from beginning to end with text information, topical webinars, videos and related articles.
“Our goal is comprehension and retention,” Heitzler pointed out. “Visitors might be pressed for time or may become distracted. While an experienced live instructor can see that and overcome it in a face-to-face training session, online learning is a different animal. So by providing visitors with options for learning and ways to break up the information rather than hours of reading or long videos, we’re able to better engage them, improving their experience and their learning.”

Once the Learning Center has been fully explored, users should have the foundation needed to operate belt conveyors safely and effectively. If managers choose, they can refer their employees to the Learning Center to gain professional development credits toward their certification to become qualified as maintenance technicians, operators, foremen, millwrights/fitters and so on.

The feedback from people who have already used the Learning Center has been excellent, according to the company. Users find it informative, easy to use, engaging, and an overall enjoyable experience. Managers and supervisors say they like having a trustworthy and cost-effective source for quick, unbiased information.  

“Of course, nothing replaces hands-on training and on-the-job experience, so that’s why the training system is called Foundations,” Heitzler said. “We provide the basic knowledge needed to work safely and efficiently in a platform that they can easily access when they need it.”

Chute Technology improves the flow at Ulan operations

Chute Technology says its new coal and ore handling technologies, designed to overcome production-limiting factors at mines and bulk handling terminals throughout Australia, are proving their worth in service at the Ulan operations in New South Wales.

The technology packages are designed to eliminate potential bottlenecks, occupational health and safety issues and weak links in the production chain that can increase downtime and reduce output, Chute Technology says.

Typical issues include bin surging, bulk cleaning, spillages, blockages and reduced throughput rates, resulting in inefficient production.

According to Dennis Pomfret, Managing Director, Chute Technology, the company designed a customised chute to eliminate potential downtime for a specific section of the bypass system at the Ulan Surface Operations, which IM understands is owned by Glencore.

The new chute has dramatically reduced downtime since commissioning, according to the company, whereas the legacy arrangements were a source of multiple hours of lost production.

“The new chute allows Ulan Surface Operations to operate with a full feed rate of 2,000 t/h without any stoppages or blockages, so they can maximise their productivity and our profitability,” Pomfret said.

Chute Technology says it combines its decades of Australian and international practical engineering experience with advanced expertise in new flow enhancement and problem-solving technologies to produce modern answers to minerals and materials handling problems. The company provides audits and solutions extending from single issues at individual plants through to whole-of-process improvements extending from mines to port or point of resource use.

Pomfret said Ulan Surface Operations was looking to the future by investing in a solution designed to maximise productivity and eliminate unwanted downtime.

“We’re delighted that we could make Ulan Surface Operations’ bypass vision come to life, and it’s rewarding to see it working out in service,” he said. “Ulan Surface Operations is always looking to employ modern solutions that avoid problems in the first place, rather than cleaning up a mess after it occurs.”

Chute Technology performed an audit of current operations to gain a holistic view of current operations, before recommending the solution. The engineering audit determined that functionality of one known trouble spot, the bypass hopper and vibratory feeder, could be taken out of service and replaced with a simpler transfer chute with an in-built surge capacity.

The chute was designed in such a way that it could all be lifted and installed in one go, minimising installation downtime, the company said.

Chute Technology also designed and installed an adjustable surge control baffle device to control the height of material on the conveyor belt. The device acts like a trimmer on the end of the chute, where it trims the height of material during times of surge loading, to avoid belt overloading, side spillage and keep material heights consistent.

“We anticipate the surge control device will reduce spillage considerably, especially when taking into account the typical delays in conveyor stopping and starting sequences,” Pomfret said.

“A major consideration for the project was to design the new chute around the existing structures as much as possible, so that there was as little rework or modifications needed before installation.

“We also took into consideration that the drop height is almost 15 m. Ulan Surface Operations wished to retain their surge bin, floor structure, vibrating feeder and conveyor structures, so we designed around these as much as was possible. Additionally, the design was modular, so the installation took as little time as possible.”

Chute Technology says it selected an asymmetric chute to avoid belt mis-tracking issues, a “virtual skirtboard” to optimise the internal flow geometry and designed a single point of contact flow path so the material flow is constantly in contact with the chute from the head pulley to the receiving belt.

Pomfret concluded: “This project has been an excellent success, and we look forward to a long-term relationship with Ulan Surface Operations, as they look to maximise productivity and profitability.”

Martin Engineering on resolving bulk material handling issues with flow aids

In order to achieve controlled and consistent flow on conveyors handling large volumes of bulk material, transfer chutes and vessels must be designed not just to accommodate – but to actually facilitate – the flow of the cargo they will be handling.

Unfortunately, because so many conditions can hamper effective cargo flow, engineering a conveyor and chutework that would handle every material situation is virtually impossible.

Even modest changes in moisture content can cause adhesion to chute or vessel walls or agglomeration at low temperatures, especially if the belt is stagnant for any period of time. Even during continuous operation, a bulk material can become compressed, and physical properties often change due to natural variations in the source deposits, suppliers or specifications, or if the material has been in storage. If left to build up, material can encapsulate belt cleaners and deposit harmful carry-back onto the return side, fouling idlers and pulleys, according to Martin Engineering. At worst, systems can become completely blocked by relatively small (and common) changes. To overcome these issues, a variety of devices collectively known as flow aids can be employed.

What Are Flow Aids?

As the term implies, flow aids are components or systems installed to promote the transport of materials through a chute or vessel, controlling dust and spillage. Flow aids come in a variety of forms, including rotary and linear vibrators, high- and low-pressure air cannons and aeration devices, as well as low-friction linings and special chute designs to promote the efficient flow of bulk materials. These modular systems can be combined in any number of ways to complement one another and improve performance. The components can be used for virtually any bulk material or environment, including hazardous duty and temperature extremes. One of the primary advantages is that an operation can obtain a level of control over the material flow that is not possible any other way.

When employing flow aids, it is critical that the chute and support components are sound and the flow aid be properly sized and mounted, because the operation of these devices can create potentially damaging stress on the structure, the company says. A properly designed and maintained chute will not be damaged by the addition of correctly sized and mounted flow aids.

It is also important that any flow aid device be used only when discharges are open and material can flow as intended. The best practice is to use flow aids as a preventive solution to be controlled by timers or sensors to avoid material build-up, rather than waiting until material accumulates and restricts the flow. Using flow aid devices in a preventive mode improves safety and saves energy, since flow aids can be programmed to run only as needed to control buildup and clogging.

Air cannons

One solution for managing material accumulation in chutes and vessels is the low-pressure air cannon, originally developed and patented by Martin Engineering in 1974. Also known as an “air blaster”, it uses a plant’s compressed air to deliver an abrupt discharge to dislodge the buildup. Cannons can be mounted on metallic, concrete, wood or rubber surfaces. The basic components include an air reservoir, fast-acting valve with trigger mechanism and a nozzle to distribute the air in the desired pattern to most effectively clear the accumulation.

The device performs work when compressed air (or some other inert gas) in the tank is suddenly released by the valve and directed through an engineered nozzle, which is strategically positioned in the chute, tower, duct, cyclone or other location. Often installed in a series and precisely sequenced for maximum effect, the network can be timed to best suit individual process conditions or material characteristics. The air blasts help break down material accumulations and clear blocked pathways, allowing solids and/or gases to resume normal flow. In order to customize the air cannon installation to the service environment, specific air blast characteristics can be achieved by manipulating the operating pressure, tank volume, valve design and nozzle shape.

In the past, when material accumulation problems became an issue, processors would have to either limp along until the next scheduled shutdown or endure expensive downtime to install an air cannon network. That could cost a business hundreds of thousands of dollars per day in lost production. Many designers proactively include the mountings in new designs so that future retrofit can be done without hot work permits or extended downtime. A new technology has even been developed for installing air cannons in high-temperature applications without a processing shutdown, allowing specially-trained technicians to mount the units on furnaces, preheaters, clinker coolers and in other high-temperature locations while production continues uninterrupted.

Engineered vibration

The age-old solution for breaking loose blockages and removing accumulations from chutes and storage vessels was to pound the outside of the walls with a hammer or other heavy object. However, the more the walls are pounded, the worse the situation becomes, as the bumps and ridges left in the wall from the hammer strikes will form ledges that provide a place for additional material accumulations to start.

A better solution is the use of engineered vibration, which supplies energy precisely where needed to reduce friction and break up a bulk material to keep it moving to the discharge opening, without damaging the chute or vessel. The technology is often found on conveyor loading and discharge chutes, but can also be applied to other process and storage vessels, including silos, bins, hoppers, bunkers, screens, feeders, cyclones and heat exchangers.

There is another innovative solution that prevents carry-back from sticking to the rear slope of a discharge chute. The live bottom dribble chute uses material disruption to reduce friction and cause tacky sludge and fines to slide down the chute wall and back into the main discharge flow. By addressing these issues, operators can experience a reduction in maintenance hours, equipment replacement and downtime, lowering the overall cost of operation.

Flow aid devices deliver force through the chute or vessel and into the bulk material. Over time, components will wear, or even break, under normal conditions. Most of these devices can be rebuilt to extend their useful life. Because clearances and fits are critical to proper operation, it’s recommended that flow aid devices be rebuilt and repaired by the manufacturer, or that the manufacturer specifically train plant maintenance personnel to properly refurbish the equipment.

This article was provided to International Mining by Martin Engineering

Kinder Australia takes a liking to AirScrape non-contact conveyor skirting solution

Australia-based conveyor component developer and supplier, Kinder Australia Pty Ltd, has added the AirScrape® non-contact conveyor skirting solution to its range.

From July 2021, the AirScrape has been included in the product range of Kinder Australia following an agreement between Kinder Australia and ScrapeTec Trading.

The AirScrape, as a side seal, and the TailScrape®, as a back seal of the transfer point, complement Kinder’s range of conveyor components and seals, according to ScrapeTec Trading, the company behind AirScrape.

AirScrape founder and mining engineer, Wilfried Dünnwald, came up with this contact-free side seal for conveyor transfer points after trying to reduce dust build-up during mining, a particular problem in underground applications.

After an initial positive response in Germany, the innovation has gained international recognition with miners in Africa and America now using the device. The agreement with Kinder is looking to expand the product’s reach to the Asia Pacific region.

“In contrast to many side sealing solutions, the AirScrape works completely contact-free at transfers,” ScrapeTec says.

“This eliminates frictional losses due to belt abrasion and extreme belt wear, because the AirScrape is mounted at a distance of 1-2 mm from the belt. In addition, there are the specially arranged blades in this innovative conveyor seal. They create the so-called ‘Venturi effect’. This is the air suction that is created by the movement of the belt and suction of air in from outside. This prevents dust or fine material from escaping through the gap between the belt and the seal.

“In addition, thanks to their arrangement, the lamellas convey coarse material that is pushing outwards back to the centre of the belt. These effects have also piqued Kinder’s interest in Australia.”

Kinder Australia Pty Ltd has been operating in the field of conveyor technology for the mining and bulk materials handling industries since 1985.

Martin Engineering expands conveyor training scope with LMS integration

Martin Engineering has added new online conveyor training content specifically designed to integrate with Learning Management Systems (LMSs) so users can assign, monitor and certify progress of all participants during its courses.

The new offering from Martin Engineering includes eight self-paced modules that address methods to identify, understand and correct common bulk conveying issues to improve safety on powerful and potentially dangerous systems, while complying with regulations, maximising productivity and achieving the lowest operating costs.

“Online conveyor training is delivering critical knowledge to companies around the world, and that’s never been more important than in these pandemic-restricted times,” Training Manager, Jerad Heitzler, said. “But, even as the popularity of these programs continues to rise, larger firms face challenges integrating the content into their LMSs so they can ensure thorough and convenient training for all employees – at all levels – across multiple sites. These modules create a verifiable record of employee training, so customers can track and confirm the participation of individuals company-wide.”

Organised into 90-120 minute segments, the virtual classes cover topics such as best practices for safety, fugitive material control and belt tracking.

With the training modules easily accessible and conveniently located in company-wide LMSs, the new Martin content gives customers complete control over scheduling and tracking, the company says.

“This is the type of training that everyone should have, and companies no longer need to rely on an outside vendor to schedule individual or group sessions,” Heitzler continued. “It delivers an in-depth and consistent understanding of conveyors and their hazards, ensuring that personnel at all levels can work safely and efficiently around these powerful systems.”

Martin Engineering has been providing training for much of its 75-plus year history, helping customers better control bulk material flows while reducing the risks to personnel. Designed to maximise employee engagement, the modules deliver topic-specific, non-commercial content that can be put to immediate use, and the new format allows even the most remote locations to take advantage, the company says.

The eight modules cover essential subjects that include an introduction to the concept of total material control, with content on transfer points, belting and splices, as well as belt cleaning, alignment and dust management.

“This system is created using a SCORM 1.2-compliant format, so it will integrate seamlessly with most existing LMSs,” Heitzler added.

SCORM is a widely used set of technical standards that provides the communication method and data models that allow eLearning content and LMSs to work together. All eight modules are currently available in English, Spanish and Portuguese, and can be provided in a variety of formats to meet the requirements of specific customers and their LMSs.

“Seven of the eight modules have a test at the end, requiring a minimum score of 70% to move on to the next module,” Heitzler said. “SCORM allows the content to interact with the LMS and leverage any features that a customer’s system has, which could include tracking the progress of each learner, providing reports or issuing certificates of completion.”

He concluded: “With this new effort in place, Martin has taken another step forward in global conveyor training. We’ve emerged as an LMS content provider to deliver greater flexibility and control over employee learning, helping customers attain the highest levels of efficiency and safety.”

BEUMER Group’s conveyor and ship loading solutions to be highlighted at MINExpo

BEUMER Group is planning to highlight just how conveying and loading systems enable safe, efficient and environmentally friendly handling of bulk materials at the upcoming MINExpo 2021 event in Las Vegas, USA.

The company’s overland conveyors and pipe conveyors enable mine operators to create individual routes for the transport of raw material with steep angles of inclination and narrow curve radii that are adapted to the respective task and topography, BEUMER says. When planning these systems, the system provider also relies on camera-equipped drones for planning, implementation and documentation. Using special software solutions, the engineers evaluate the aerial photographs photogrammetrically to generate digital terrain models.

The product range includes stackers and bridge reclaimers for storage yards, with or without blending bed systems. These reclaimers stack bulk material and guarantee a maximum blending effect, according to the company. Users can also efficiently homogenise large quantities of different bulk materials and bulk material qualities and, thus, ensure the uniformity of the raw materials used. For efficient loading, BEUMER Group also offers ship loaders with fixed booms and extendable telescopic belt conveyors. To supplement these, users can also procure bulk loading heads to use when loading bulk materials into silo vehicles quickly and without dust.

The company will present efficient system solutions with overland conveyors, pipe conveyors and ship loaders from September 13-15 at MINExpo.