Tag Archives: EDL

Bellevue Gold on its way to achieving ‘holy grail’ with EDL pact

Bellevue Gold Limited says it has taken a pivotal step towards its aspirational goal of becoming Australia’s first ASX-listed gold miner with net-zero emissions by signing an Early Works Agreement with Energy Developments Pty Ltd and locking in long-lead items for its power station, ready for the processing plant commissioning in mid-2023.

The purchasing of the long lead items will see the company continue its carbon mitigation strategy, based off proven technologies with a Tier 1 power supplier, it said.

This agreement is a key step in Bellevue’s strategy to be powered by a forecast average of 80% renewable energy each year using a wind, solar and battery hybrid power solution.

EDL built, owns and operates a similar turnkey power solution at the Agnew gold mine, around 35 km south of the Bellevue gold project.

Bellevue and EDL are currently negotiating a Power Purchase Agreement for the project, which is subject to approval by the boards of both EDL and Bellevue.

Bellevue says its power solution is central to the company’s goal of generating the lowest carbon emissions per ounce of gold produced by any major Australian gold mine, with forecast emissions of between 0.15-0.20 t of CO2e/oz.

“As well as being the lowest emitter on a per ounce basis, the project is forecast to have the lowest total Scope 1 emissions of any major mine in Australia,” it said. “This will give the project the cleanest power supply in Australia based on a greenhouse gas per kilowatt hour basis of power generation.”

By reducing greenhouse gas emissions, with a renewable energy power station and undertaking other sustainable initiatives, Bellevue aims to produce carbon-neutral gold, giving the company a major competitive advantage in global investment markets, it says. This also provides potential for the company to seek a premium for the sale of ‘green gold’, it added.

The power station will prioritise the use of renewable energy and will also include a gas engine configuration, which, it says, will ensure there is sufficient power for the mine, even in the rare absence of solar and wind resources.

EDL will supply trucked LNG to the project to maintain optionality for any future technological innovations in thermal generation alternative fuels. Trucked LNG provides a much cleaner fuel than diesel, which was an important consideration to reduce emissions as far as possible, it said.

At a steady-state production rate of 1 Mt/y, renewable energy is expected to meet up to 80% of the project’s annual electricity needs, taking advantage of the region’s strong solar and wind resources.

Bellevue says it has been modelling the wind speeds and direction with a SODAR unit, which has allowed for the integration of wind turbines to increase the renewable energy penetration rate.

Maximising renewable energy uptake has been a key design consideration for the processing facility. The facility will have the ability to use more power – such as crushing and heating – when increased renewable energy is available, reducing thermal requirements, according to the company.

The planned infrastructure includes an oversized crushing circuit to facilitate a processing rate of more than 1.5 Mt/y (against current throughput rate of 1 Mt/y), allowing the operational flexibility in this area for an optimised match up of the renewable energy demand to the renewable energy resource.

The designed infrastructure will allow Bellevue to have a cost-effective renewable energy supply and optimise the power demand curve to better align with key daytime (solar) and night time (wind) energy peaks and troughs. Through the generation of power from renewable energy sources, it will create the optionality for the crushing circuit to maximise crushing in peak renewable energy generation periods. This will have the potential to offset more than 1 MW in demand on thermal power generation and lead to a direct cost saving and emissions reduction.

Bellevue Managing Director, Steve Parsons, said: “EDL is a leader in hybrid off-grid power stations. Their skills and experience will help ensure we maximise the use of renewable energy at the Bellevue gold project.

“Bellevue is forecasted to be a 200,000 oz a year gold miner with low all-in sustaining costs of A$1,000-A$1,100/oz ($644-$708/oz) powered by circa-80% renewable energy, with a pathway to net-zero emissions as a world-leading company in the race to decarbonise the mining sector.

“Our pre-production carbon mitigation strategy has been strategic and is world leading. It achieves the ‘holy grail’ of lower emissions and a direct cost reduction in power generation.

“The combination of these metrics is expected to will position Bellevue as one of the most sustainable and financially successful Australian gold miners, maximising returns for all stakeholders. It will also underpin the company’s strong appeal to global investors, who demand performance on both financial and ESG measures.”

On the same day as the EDL announcement, the company signed a Native Title Agreement with Tjiwarl (Aboriginal Corporation) RNTBC, being the native title rights and interests holders and traditional owners of the land which hosts the Bellevue gold project.

Woodside Energy and EDL to help power up Thunderbird mineral sands project

Sheffield Resources says the joint venture that manages the Thunderbird mineral sands project in Western Australia has secured a supply of LNG for at least five years from subsidiaries of Woodside Energy Group Ltd and EDL.

Kimberley Mineral Sands, owned 50:50 by Sheffield Resources and Yansteel, has executed a binding five-year agreement, with the ability for the parties to extend for a further five years, with Woodside Energy (LNG Fuels & Power) Pty Ltd, a subsidiary of Woodside Energy Group Ltd (Woodside) and EDLLNG Fuel to Power Pty Ltd (EDL) for the supply and delivery of approximately 650 tj/y of liquefied natural gas (LNG) to the project.

LNG will be supplied by the Woodside/EDL joint venture (WEJV) from Woodside’s Pluto LNG Truck Loading Facility, near Karratha in Western Australia, and transported to the KMS LNG storage facility by WEJV. WEJV will own and operate a purpose-built road tanker fleet to safely and reliably deliver the LNG to Thunderbird.

The agreement enables flexible, long-term gas supply to KMS for power generation, Sheffield said, adding that it was subject to a number of customary conditions precedent, including KMS making a final investment decision toward the development of Thunderbird, following the completion of project financing of Thunderbird.

Sheffield Resources Executive Chair, Bruce Griffin, said: “We are extremely pleased KMS have established a strong relationship with Woodside and EDL as they support KMS by delivering a low cost, efficient energy solution for Thunderbird. Thunderbird construction is continuing to advance at a significant pace and remains on track for first production in early 2024.”

A bankable feasibility study released earlier this year outlined a A$484 million ($314 million) Stage 1 project using a Single Mining Unit Plant that underpinned a 10.4 Mt/y mining operation and a processing plant design feed rate of 170 t/h. The Stage 2 project saw a duplication in year five of Stage 1 mining underpinning a 20.8 Mt/y mining operation and an increase in the processing plant feed rate to 290 t/h.

Earlier this month, Pacific Energy signed a 15-year Power Purchase Agreement with KMS, wherby Pacific Energy will design, build, own and operate a 16 MW high efficiency gas power station combined with 2 MW of battery storage and an on-site LNG storage and re-vaporisation facility with 10 days’ storage capacity for the Thunderbird project.

IMARC ready to explore the race to decarbonise the energy sector

The global effort to decarbonise the energy sector is underway, and the race to net zero is shaping up to be an investment opportunity to define the decades to come, the organisers of the IMARC conference report.

Research suggests that as the price of adopting green energy continues to fall, so will the global demand for fossil-fuelled energy sources. Eventually a tipping point will be reached, and fossil fuel dependent energy companies’ assets will become ‘stranded’ unless they can adapt or pivot toward new sustainable energy practices.

As nations in the first world expand and those from the second and third world modernise, their energy needs will do the same, meaning more electricity, more hydrogen, more nuclear and more yet-to-be-discovered energy sources will be needed than ever before.

For the companies participating in Australia’s biggest mining conference, the International Mining and Resources Conference (IMARC) in 2022, staying in the race to decarbonise is essential.

Tipping point

Research suggests the tipping point for fossil-fuelled energy providers will come when costs for renewables reach parity with the lowest-cost traditional fossil alternatives, and this could be much sooner than 2050.

For such companies, demonstrating the long-term value to investors in a soon-to-be stranded asset class is becoming an increasingly hard sell. But it does not have to be. By pivoting toward renewable energy and investing in a low-carbon future, companies can ensure their survival after net zero.

EDL CEO, James Harman, said the industry was making the slow but sure transition to decarbonisation.

“The world has long relied on cheap, plentiful fossil fuels to power economies,” Harman said.

“In the early 2010s, EDL started looking to solar and wind generation as alternatives to fossil fuels across our portfolio, particularly for off-grid customers in remote Australia who were largely dependent on diesel- or gas-fuelled generation.

“In recent years, we have enjoyed great success with our hybrid energy solutions, helping our customers reduce their carbon footprint, but importantly maintaining and improving reliability whilst holding or reducing price. For example, our Agnew Hybrid Renewable Microgrid at Gold Fields’ Agnew Gold Mine provides the mine with energy that is an average of 50-60% from renewable sources, with 99.99% reliability.”

“EDL was one of the pioneers in the Australian landfill gas sector in the 1990s and, today, we are leading the way in high renewable energy fraction islanded microgrids. We are also exploring the introduction of landfill gas to renewable natural gas/biomethane technology to the Australian market, and the economic production of green hydrogen.”

ESG reinvigorating investment

Environmental, social and governance (ESG) frameworks are, at their core, risk assessment tools that consider the effect climate change will have on investors’ value creation opportunities. In June 2021, research and advisory experts, Gartner, released some jaw-dropping facts about the growing importance of ESG credentials.

According to Gartner, more than 90% of banks monitor ESG, along with 24 global credit ratings agencies, 71% of fixed income investors and more than 90% of insurers. Media mentions of ESG data, ratings or scores grew by 30% year-over-year in 2020, and 67% of banks screen their loan portfolios for ESG risks.

Harman acknowledged that it was important for attitudes and practices across the energy sector to change.

“Given that electricity generators are some of Australia’s biggest carbon emitters and most of the product generated is carbon intensive and derived from fossil fuels – the most important ESG themes for energy companies are climate change action and environmental stewardship,” he said.

“This includes investment in research and development into zero emissions technologies such as distributed energy solutions, energy storage and alternative renewable fuels as well as carbon capture & storage.”

ABB Australia Head of Mining, Nik Gresshoff, is encouraged by the innovation and progress he’s seeing in electrification and hydrogen technologies. ABB Australia is a Gold Sponsor of IMARC in 2022.

“The challenge for mining companies now is to map out their own journey, and to weigh up the gains that can be achieved now through automation, along with the investment required to get to net zero,” Gresshoff said.

Gresshoff recommends companies first define what their carbon footprint is, and what falls within their scope for decarbonisation, before beginning a net-zero journey. “Are they focusing on direct and indirect emissions initially or including the whole supply chain from the outset?” he asked.

“The next step is to examine the technology and what is currently possible to decarbonise. Having a clear understanding of where the company assets are in their lifecycle is critical, as well as an understanding of what technology is available and what technology could fit with the current operation.”

Can dinosaurs survive the Ice Age?

Fossil fuels may be going the way of the dinosaurs that created them, but economies of the future will still require the massive infrastructure frameworks and operational capacities to meet current and future energy needs.

In fact, economists have suggested an overnight collapse of the energy giants could result in massive job cuts and instability leading to a global economic recession.

As was made clear at the Glasgow COP 26 Summit, there is a ‘wall of money’ that will be available for the energy companies of the future – whether that is retrofitting existing gas pipelines for transport of liquid hydrogen or utilising closed coal mine sites for new nuclear power sites, or any number of ways that energy companies can and are pivoting.
EDL believes there is an opportunity for many technologies to play their part.

“There won’t be a one-size-fits-all energy solution that achieves affordability, reliability and sustainability for our diverse country,” Harman said.

“Large conventional power stations are and will continue to be replaced with lower emissions plant with support to make them more dispatchable, allowing cheaper renewable energy to be scheduled when available.

“For shorter-term storage, batteries are feasible but longer-term storage is currently uneconomic. There are a few potential options to resolve this including pumped hydro, new kinds of batteries and hydrogen.

“Based on our experience in the USA, we also see the potential for renewable natural gas (RNG), or biomethane, to play a significant part in the transition from fossil fuels to renewables in the industrial, heating, power and transport industries. RNG production is a technologically mature, ready-to-scale product that is deployable now.”

EDL’s James Harman will be sharing further insights on net zero at the upcoming IMARC in Melbourne, Australia, taking place on January 31-February 2, 2022.

IM is a media sponsor of IMARC

Saft tech helps Gold Fields make the renewable energy switch at Agnew

A Saft lithium-ion battery energy storage system (BESS) is playing a key role in helping Gold Field’s Agnew mine make the switch from fossil fuels to wind and solar power, according to the Paris-based company.

In Saft’s first project for EDL, the BESS has been installed within a hybrid renewable microgrid with an installed capacity of 56 MW. This is the first microgrid to incorporate wind power on a large scale at an Australia mine, the company said, with the energy storage critical in enabling the EDL microgrid to maintain power quality as it integrates an increasing level of volatile and unpredictable renewable energy.

EDL Chief Executive Officer, James Harman, said: “The Agnew hybrid renewable microgrid was completed on May 1, 2020, and has proven to be a great success – under the right weather conditions, the microgrid has delivered up to 85% of the site’s power requirements with renewable energy.

“The BESS is critical to this success. That’s why we selected Saft’s Li-ion technology – it offered a complete solution with a proven track record. We’d be happy to work with Saft again.”

The Agnew gold mine is an underground operation 1,000 km northeast of Perth in Western Australia. The site covers over 600 sq.km and has the capacity to process 1.3 Mt/y of ore.

The remote off-grid location means the Agnew site must generate its own electricity, with Gold Fields committed to sustainable and innovative power solutions. It engaged EDL in a 10-year agreement to build and operate Australia’s largest hybrid renewable energy microgrid.

The first project phase involved the construction of a 4 MW solar farm and a 21 MW gas/diesel engine power plant. This was followed by five wind turbines for 18 MW of generation, a microgrid controller and Saft’s 13 MW/4 MWh energy storage system.

The turnkey BESS at the Agnew mine comprises six of Saft’s Intensium® Max+ 20M, 20 ft (6.1 m) containers together with a power conversion system, transformer and MV switchgear installed in three 40 ft containers. Its main role is to provide power quality support for the microgrid to maximise the usage of variable renewable energy, according to Saft. It also provides “ultra-fast reacting spinning reserves” to help maintain grid stability and minimise the need for fossil fuel-based generation units to run idle for this purpose.

The Intensium Max+ 20M design meant no modifications were required to ensure a long operational life in the demanding dusty and sandy desert conditions, where peak temperatures can reach 48°C, Saft said. To maintain maximum uptime and availability for the BESS, Saft is providing remote monitoring together with a service contract including yearly on-site maintenance.

The Intensium Max+ 20M is fully fitted out and tested by Saft at its manufacturing hub in Jacksonville, Florida. As a result, the containers were delivered to site ready to ‘plug and play’.

EDL brings 56 MW hybrid renewable energy project online at Gold Fields’ Agnew mine

Global energy producer EDL says it has successfully completed the 56 MW Agnew Hybrid Renewable project for Gold Fields’ Agnew gold mine in Western Australia.

All five wind turbines are now up and running and successfully integrated into Australia’s largest hybrid renewable microgrid, and the first in the country to power a mine with wind-generated electricity, it said.

In favourable weather conditions, the project has delivered up to 70% of Agnew’s power requirements with renewable energy, according to the company. This is significant as the Agnew mine consists of two underground complexes and one 1.3 Mt/y processing plant consisting of a three-stage crushing circuit, two-stage milling circuit, gravity circuit and carbon-in-pulp circuit.

Upon announcing the project in June 2019, Gold Fields and EDL said the A$112 million ($78 million) investment would help create a “world-leading energy microgrid combining wind, solar, gas and battery storage”.

The project comprises four key components controlled by an advanced microgrid system. This includes five 110 m wind turbines, each with a rotor diameter of 140 m, delivering 18 MW; a 10,710-panel solar farm generating 4 MW; a 13 MW/4 MWh battery system; and an off-grid 21 MW gas/diesel engine power plant.

The Australian Renewable Energy Agency (ARENA) provided A$13.5 million ($8.7 million) in funding to the project as part of its Advancing Renewables Program.

EDL Chief Executive Officer, James Harman, said: “We applaud Gold Fields for their vision in embarking on this journey with us, and their role in leading the Australian mining industry’s transition to clean, reliable renewable energy.

“We also acknowledge the incredible achievement of the EDL project delivery team and our contractors. We faced transport challenges during the bushfires and impacts on personnel from COVID-19 restrictions, as well as geographical, logistics and technical challenges to safely construct this innovative energy facility in the remote WA Goldfields region.”

Gold Fields Executive Vice President Australasia, Stuart Mathews, said the completion of the project was an important milestone for Gold Fields, EDL and the broader mining industry.

“We are proud to be able to showcase this project with EDL as an outstanding example of the capacity of the hybrid renewable energy model to meet the dynamic power requirements of remote mining operations.

“For our people and our stakeholders, this is a very clear demonstration of our commitment to reducing our carbon footprint whilst strengthening our security of supply.

“Having built our internal technical capability and developed strong relationships with our business partners, we are well placed to continue to implement renewables solutions elsewhere in our business.”

Strandline, Woodside and EDL to work on ‘world-first’ power project for Coburn

Strandline Resources has selected Woodside and EDL to provide a fully integrated energy solution for its Coburn mineral sands project, in Western Australia.

The parties have signed a non-binding proposal for the development of a 27 MW integrated trucked LNG, storage and power station facility, comprising gas and diesel back-up generators combined with state-of-the-art solar and battery technology, it said.

The Woodside and EDL joint venture (WEJV) was formed to provide clean, reliable and affordable LNG to market, according to Strandline.

“This world-first trucked LNG to hybrid renewable microgrid project will see EDL bring its turnkey expertise to the project’s power station and LNG storage and re-gasification facilities, with LNG supplied from Woodside’s Pluto LNG truck loading facility near Karratha, Western Australia,” Strandline said.

It is expected that contract documentation, in the form of a 15-year power purchase agreement, will be finalised over the coming months in readiness for the commencement of construction, Strandline said.

The WEJV solution provides Strandline with a long-term safe, reliable and highly efficient energy solution for Coburn, according to the developer.

EDL was recently involved in the start up of phase one of a hybrid power project at Gold Fields’ Agnew gold mine, also in Western Australia (pictured).

Coburn, meanwhile, is a mineral sands deposit hosting “exceptional” zircon and titanium mineral sands products, Strandline says. The project benefits from being situated in the well-established mining jurisdiction of Western Australia, close to key road, port and services infrastructure.

The company recently completed a definitive feasibility study on Coburn, which showed the project could generate a pre-tax net present value of A$551 million ($377 million) using a US$:A$ of 0.72, an 8% discount rate, and development capital of A$207 million for the heavy mineral concentrate produce case, with an additional A$50 million required for the final products case (including mineral separation plant infrastructure).

Gold Fields Agnew hybrid power project starts up

Global distributed energy producer EDL has switched on its 23 MW power station, which integrates photovoltaic solar with gas and diesel generation, to power Gold Fields’ Agnew gold mine, in Western Australia.

This switch-on completes the first stage of one of Australia’s largest hybrid renewable micro-grid projects, according to EDL.

EDL CEO, James Harman, said: “With this project, EDL and Gold Fields are leading the way towards clean, renewable energy to power remote, off-grid mining operations without compromising reliability or power quality.”

Gold Fields Executive Vice President: Australasia, Stuart Mathews, said: “The power station we are officially opening today integrates 4 MW solar generation from our new solar farm and is underpinned by 19 MW of gas and diesel generation. It will soon include other renewable energy technologies coming online in the next stage of the project.”

He referred to the importance of the A$112 million ($76 million) project to both Gold Fields and the broader industry: “This is a significant milestone for both the Agnew gold mine and the broader Gold Fields Group, demonstrating our ongoing commitment to strengthening our energy security, optimising energy costs and reducing our carbon footprint through the adoption of new technologies. We are hopeful that this will also enable other companies to consider the options for decarbonising their operations.”

The second stage of the project, which includes 18 MW wind generation, a 13 MW battery and an advanced micro-grid control system, is currently under construction and due to be completed in mid-2020.

It has the backing of the Australian Renewable Energy Agency with a recoupable A$13.5 million contribution to the construction cost of the project.

Once completed, the Agnew Hybrid Renewable project will be the first to use wind generation as part of a large hybrid micro-grid in the Australian mining sector. It will have a total installed generation capacity of 54 MW, with renewables providing over 50% of the Agnew gold mine’s power requirements, with the potential to increase this further by adopting innovative operational practices such as the dynamic load shedding, renewables forecasting and load control management.

As part of the EDL remit, juwi Renewable Energy, the Australia subsidiary of international project developer juwi, delivered a 4 MW Single Axis Tracking PV installation together with cloud forecasting and an advanced micro-grid control system to enable integration with the mine off-grid network.

EDL to power Centennial’s Mandalong mine with waste coal mine gas

Global sustainable energy producer EDL has announced a 20-year contract to build, own and operate a waste coal mine gas power station for Centennial Coal’s Mandalong mine, in the Lake Macquarie area of New South Wales, Australia.

When completed in late 2020, the power station will have installed capacity of 8 MW and convert waste gas extracted during mining operations into electricity to power the mine.

The Mandalong thermal coal mine is an underground longwall that commenced operations in 2005. It has approval to produce 5.5 Mt/y of coal.

EDL Chief Executive Officer, James Harman, said: “For decades, EDL has supported our customers in the mining industry to achieve greenhouse gas abatement and cost savings with our waste coal mine gas power stations,” he said. “We are delighted to provide Centennial Coal with this reliable, sustainable energy solution and look forward to a long, collaborative partnership.”

Centennial Deputy Chief Executive Officer, Peter Parry, said: “As well as fuelling nearly 40% of NSW’s coal fired electricity, Centennial is also a significant energy consumer to power our mines. EDL, by converting the methane gas we extract during the process of mining to generate electricity to meet our energy needs, provides a practical and cost-effective arrangement that also reduces our emissions.”

Gold Fields goes for low-carbon energy solution at Agnew gold mine in Australia

Gold Fields says its Agnew gold mine, in Western Australia, will become one of Australia’s first mining operations to be predominantly powered by renewable and low-carbon energy following a deal with global energy group EDL.

Gold Fields and EDL have agreed on a A$112 million ($78 million) investment in what the gold miner says is a “world-leading energy microgrid combining wind, solar, gas and battery storage”.

The Agnew mine consists of two underground complexes and one processing plant, with a capacity of 1.3 Mt/y consisting of a three-stage crushing circuit, two-stage milling circuit, gravity circuit and carbon-in-pulp circuit.

The microgrid will be owned and operated by EDL, which will recoup its investment via a 10-year electricity supply agreement with Agnew.

The project, which is already under construction, has the backing of the Australian Government with the Australian Renewable Energy Agency (ARENA) contributing a recoupable A$13.5 million to its construction, according to Gold Fields.

The Agnew microgrid is initially forecast to provide 55-60% of the mine’s energy needs, with potential to meet almost all energy requirements at certain times, Gold Fields said. The Agnew microgrid will consist of five wind turbines delivering 18 MW of power, a 10,000-panel solar farm contributing 4 MW, a 13 MW/4 MWh battery energy storage system, and a 16 MW gas engine power station to underpin supply when required.

EDL said stage one consists of a new off-grid 23 MW power station incorporating 16 MW gas and 3 MW diesel generation and 4 MW photovoltaic solar, which is on track for completion in mid-2019. Stage two includes 18 MW wind generation, a 13 MW battery and an advanced micro-grid control system, with construction recently started and due for completion in 2020.

The hybrid microgrid at Agnew follows the announcement of a microgrid at Gold Fields’ Granny Smith mine, featuring 20,000 solar panels and a 2 MW/1 MWh battery system planned for completion in the December quarter.

Gold Fields Australia Executive Vice President, Stuart Mathews, said the Agnew hybrid microgrid project reflects the company’s strategic objective to strengthen energy security, optimise energy costs and reduce its carbon footprint through innovation and the adoption of new technologies.

“The ARENA contribution supports and encourages our efforts. We are making staged investments across our mines in Western Australia to significantly ramp up the innovative use of renewables to meet our dynamic and growing load requirements,” Mathews said.

The funding is part of ARENA’s Advancing Renewables Programme. ARENA CEO, Darren Miller, said the project marks a growing shift in the mining sector’s thinking around powering mine sites.

“The project Gold Fields is undertaking will provide a blueprint for other companies to deploy similar off-grid energy solutions and demonstrate a pathway for commercialisation, helping to decarbonise the mining and resources sector,” Miller said.

Gold Fields says it is embracing innovation and technology across all levels of its mining operations and Mathews said this also extended to its approach to power supply and demand management.

“At Agnew, we will be using instrumentation to detect approaching cloud cover for solar and, potentially in the future, detect changes in wind velocity. Based on this data, the gas power station will have forward-looking systems in place to schedule gas generators in response to forecast changes in the renewable energy supply,” he said.

EDL CEO, James Harman, said the company has seen increasing momentum towards hybrid energy solutions, particularly in remote, off-grid locations. “EDL is pleased to be an active contributor to Australia’s transition to sustainable energy,” Harman said. “Our knowledge and experience from our successful hybrid renewable projects will enable us to provide Agnew with greater than 50% renewable energy over the long term, without compromising power quality or reliability.”

Mathews said: “The configuration of Agnew’s hybrid solution is a first for Gold Fields and is an excellent example of using innovation and technology to improve efficiencies and lower costs. We are fast sharing lessons from this project with our other regions, as part of our global strategic initiatives to improve our security of supply and reduce carbon emissions.”

Gold Fields is the third largest gold producer in Australia. It currently owns and operates three mines in Western Australia and is completing the construction of a fourth, Gruyere, in joint venture with Gold Road Resources.