Tag Archives: Electric Mine Consortium

Bortana-South32

South32 embarking on battery-electric vehicle trials at Cannington

South32’s greenhouse gas emission (GHG) reduction plans were established early on in the company’s life, with a long-term goal of achieving net zero operational GHG emissions by 2050 set in motion within a year of it coming into being.

It has since established a medium-term target to halve its operational GHG emissions by 2035, from its 2021 financial year baseline, with several initiatives already in play to achieve this aim.

The company’s approach to climate change is focused on:

  • Reshaping its portfolio to the base metals deemed critical in the transition to a low-carbon world;
  • Decarbonising its operations, with a focus on the four operations within its portfolio which account for the majority (93%) of its emissions profile (Hillside Aluminium, Mozal Aluminium, Worsley Alumina and Illawarra Metallurgical Coal (IMC));
  • Understanding and responding to the potential physical impacts of climate change on its business to build operational resilience; and
  • Working with others to innovate and address shared challenges across industry, and to decarbonise the value chain.

The company has made headway on all four of these objectives since settling on this focus.

The portfolio reshaping is coming good with advancements in base metal projects and an acquisition of a significant stake in the Sierra Gorda operating mine in Chile.

In its 2023 financial year, the company commenced conversion of its first coal-fired boiler to natural gas as a transitional step at Worsley Alumina, with an estimated abatement of up to 205,000 t/y of CO2-e; converted 18% of pots at Hillside Aluminium to AP3XLE energy efficient technology and completed four of five EnPot trials; and commenced detailed design and execution planning for a commercial scale trial of CSIRO ventilation air methane mitigator technology at IMC.

And, when it comes to working with others to innovate and address shared challenges across industry, South32 can point to work it is carrying out under the auspices of the Electric Mine Consortium (EMC) – a group of companies aiming to accelerate progress towards a fully electrified, zero carbon, zero particulates mine.

As the lead in both the electrical infrastructure workstream, and energy supply and storage workstream within the consortium, South32 has agreed to take significant steps on behalf of the industry.

On the latter workstream, it recently scanned the market for long duration energy storage through an expression of interest, which received submissions from over 20 vendors, targeting seven members’ use cases.

“The knowledge gained informed a pre-concept study of thermal energy storage at Worsley Alumina and a related steam electrification study,” South32 said in its most recent Sustainable Development Report.

And, when it comes to the former, the company intends to build on its experience trialling the Cat R2900 XE diesel-electric loader at the Cannington operation in Queensland, with plans to trial three battery-electric light utility vehicles and a battery-electric integrated tool carrier, also at Cannington.

These trials, expected to run for at least 12 months and to prove the use case of electric vehicles for underground mining – including safety, reliability, range and capability requirements – will see three Bortana light utility vehicles deployed, two of which have been configured for heavy duties and one configured as a supervisory vehicle; with a Batt Mobile Equipment (BME) BIT120 integrated tool carrier also being put through its paces.

The Bortana EV is a battery-electric vehicle designed to handle the dynamic operating environment of underground mines. Designed and developed in Australia, it uses the chassis of a diesel-powered Agrale Marruá, electric technology from 3ME and Safescape’s design and engineering expertise. It is designed to tackle safety and health concerns by reducing emissions, heat and maintenance.

The BIT120, meanwhile, is BME’s second generation 20-t Integrated Tool Carrier, which combines an optimal production loader based on a Volvo L120F platform that has been converted to operate with zero diesel emissions, minimal noise, reduced vibrations and low heat output.

Charging infrastructure for all four pieces of equipment has already been installed at Cannington, and there are expectations the learnings from these trials will be factored into the plans at the Hermosa project in Arizona, USA – a project the company has already mooted could use battery-electric underground equipment.

Alongside this work, South32 continues to fund ongoing developments with BluVein1, a system that allows concurrent dynamic powering and charging of electric vehicles suited to the small-scale underground truck configurations, providing an alternative to static charging or fast charging technology.

Cat R2900 XE

Cat R2900 XE diesel-electric LHDs brought into Gold Fields net zero plan

As part of a strategy to reduce carbon emissions from its operations and achieve a ‘net zero’ status by 2050, Gold Fields is investing in three Caterpillar R2900 XE diesel-electric loaders for its underground mines in Western Australia.

The gold miner’s ESG strategy, launched in December 2021, was at the same time embedded as one of three pillars in the company’s strategy. Gold Fields has demonstrated this focus over the last few years, especially when it comes to its efforts to decarbonise its mining operations.

In addition to constructing and commissioning several solar plants, renewable microgrids and low-carbon gas turbines across some of its operations in South Africa and Australia, Gold Fields has been at the forefront of decarbonising the load and haul part of the underground mining cycle.

In 2021, Gold Fields started trialling a Sandvik LH518B 18 t battery-electric underground LHD, in addition to a 50-t-payload battery-electric Z50 truck, also from Sandvik. The machines were put through their paces at the Hamlet North mine, part of the St Ives operation, near Kambalda in Western Australia. The results of these trials were shared with members of the Electric Mine Consortium (EMC).

Rob Derries, Unit Manager: Innovation & Technology at Gold Fields Australia, says the results from testing the loader and truck at St Ives have shown the need for an alternative to assist the battery swap functionality for its local underground mines.

“The depth of our mines and the resultant ramp inclines indicate that a battery swap system alone will be a challenge from an infrastructure or financial perspective when rolling out on a larger fleet-wide basis,” he told IM.

Alongside this work, Gold Fields has trialled a hybrid diesel-electric drive Komatsu WX22H (formerly the Joy 22HD), which uses a Kinetic Energy Storage System to capture and reuse braking energy from each of the four wheels, reducing fuel burn and boosting productivity, according to the OEM and Gold Fields.

In 2021, Gold Fields started trialling a Sandvik LH518B 18 t battery-electric underground LHD

Now, the company has committed to bringing three Caterpillar R2900 XEs into two of its underground mining operations, according to Derries.

Built on the platform of Caterpillar’s most popular underground loader, the R2900G, this LHD features a switch reluctance electric drive system alongside a Cat C15 diesel engine, which offers up to 335 kW of power. The OEM says the machine comes with about 30% increased fuel efficiency compared with the R2900G, with its lower engine revolutions per minute resulting in reduced fuel burn, heat, noise, vibration and exhaust emissions.

Derries said Gold Fields does not consider the R2900 XE a “hybrid” machine given it has no battery or energy storage component on board, but stressed that it still offers the reduced fuel burn and productivity advantages the company is looking for as part of its modernisation strategy.

“From the field-follow trial reports we have seen, it can produce a 35% fuel burn reduction,” he said. “This is why we consider it to be part of our plan to transition our operations to zero emissions, just like the Epiroc machine we are working on.”

Last year, Gold Fields entered into a Memorandum of Understanding with Epiroc to develop and test a proof of concept for the 65-t class Minetruck MT65 E-Drive with the aim of having a prototype diesel-electric truck running at the miner’s Granny Smith mine, near Laverton in Western Australia, in late 2024.

Derries says the company is also continuing discussions with all OEM partners on potential battery-electric vehicle deployments at its Australian underground mines, explaining that variations on trolley infrastructure, battery charging and battery swapping were being evaluated.

EMC collaboration builds confidence

The field-follow trials Derries references were integral to Gold Fields making the investment in the Caterpillar diesel-electric vehicles.

“In Australia, there were four field-follow units that Cat sent out, all of which went to EMC member operators,” he said. “The feedback and learnings that came back from these trials, which was shared internally within the consortium, provided the confidence we needed to make the investment decision.”

The EMC is a growing group of leading mining and service companies, all of whom are driven by the imperative to accelerate progress towards the fully electrified zero CO2 and zero particulates mine. In the short time since establishment, the consortium’s membership has grown almost two-fold with over 40 equipment trials in 15 different locations mobilised.

Outside of these Caterpillar R2900 XE field follow units, Westgold Resources took delivery of the first commercial R2900 XE at its Midwest operations in Western Australia, as part of an agreement with WesTrac. The mining company has since agreed to purchase another six of the diesel-electric vehicles.

A separate R2900 XE is due to be delivered to another mining operation in Australia later this year, IM understands.

Derries says Gold Fields has felt the benefits of signing up to the EMC.

“The EMC is a great platform for operators like us to gather information without having to trial everything out there,” he said. “Like the companies that shared their data from the R2900 XE field-follow trials, we shared the learnings from our Sandvik trials – not just our operational performance data.

“We were then able to do a cross check between our battery-electric trial data and the field-follow trials from the Caterpillar machines, giving us the confidence to invest in the three LHDs.”

Derries says the new units are expected to arrive at its operations in the next 12 months.

ZERO Automotive brings newest ZED70 Ti BEV to IGO’s Nova project

ZERO Automotive has delivered what it refers to as an ultra-safe ZED70 Ti battery-electric converted utility vehicle, using LTO battery technology that does not suffer from thermal runaway, to Independence Group’s Nova nickel-copper-cobalt operation in Western Australia.

This is the second convered vehicle, and the first dual cab, for Barminco, the contractor at Nova.

Like the first delivery, this conversion also allows for ultra-fast charging and maintains the highest torque rating for a mining-spec battery-electric vehicle by a factor of one-and-a-half times, the company says. Site integration activities with charging infrastructure and data capture will be the focus in the coming months, with the installation of the Geotab GO9 telematic device allowing for vehicle monitoring and tracking.

This is the third vehicle delivered with METS Ignited support previously awarded to ZERO Automotive. It also forms part of the trials being undertaken by Barminco in its role as lead of the Electric Mine Consortium light and auxiliary vehicle working group, of which ZERO Automotive is also a participant.

The next conversion for Barminco will be its upgraded production platform, which will provide available torque of 267% greater than its closest competitor, and allows for faster charging, ZERO Automotive says.

Ampcontrol highlights latest DC Electrical Vehicle Charger at IMARC

Ampcontrol used the backdrop of this week’s International Mining and Resources Conference (IMARC) in Sydney, New South Wales, to showcase its electrification solutions, including the launch of a mine specification DC Electric Vehicle Charger.

Recognising there is a growing demand for low emissions technology, Ampcontrol says it is collaborating with industry leaders to develop and deliver innovative solutions to mining customers that support a net-zero carbon environment.

The various DC chargers and DRIFTEX, Ampcontrol’s mine site personnel carrier Battery Electric Vehicle (BEV), are evidence of the company’s future and vision for the industry, it says. These solutions work together to support emission reductions and increase personnel safety by removing diesel particulate matter and reducing noise underground.

With a focus on decarbonisation and enabling net zero emissions, Ampcontrol recently joined the Electric Mine Consortium (EMC), established to drive real-world solutions of decarbonisation in the mining industry.

On top of this charger, Ampcontrol’s off-grid and stand-alone power systems (SPS) provide a self-sufficient, continuous and reliable power supply to isolated consumption sources, using an array of technology including solar PV panels, inverters and battery storage, the company explained.

Taking the next step with its SPS technology, Ampcontrol is adapting the award-winning Solar Qube SPS into a Green Hydrogen SPS system, a first of its kind in Australia.

These electrification and energy solutions, along with H3RO Ampcontrol’s harsh environment reticulated optics solution, developed in collaboration with HUBER+SUHNER, were showcased by Ampcontrol at IMARC.

Ampcontrol strengthens decarbonisation drive by joining the Electric Mine Consortium

Ampcontrol says it has joined the Australia-based Electric Mine Consortium (EMC) to drive efforts towards electrifying and decarbonising the mining industry.

The EMC is a growing group of highly regarded mining and service companies, driven by the imperative to produce zero-emission products for their customers and meet mounting investor expectations and industry challenges.

Ampcontrol is strengthening its strategic focus on decarbonisation through the innovation and development of electrical solutions, adapting to the changing times.

“Joining the Electric Mine Consortium is a natural progression of our commitment to supporting our customers and industry through the national energy transition,” Rod Henderson, Ampcontrol Managing Director and CEO, said. “Ampcontrol is at the forefront of renewable energy manufacturing. We engineer and supply advanced technology, products, and services to enable a competitive advantage in a net-zero carbon environment.”

EMC Founder and Director Graeme Stanway, said: “The way we generate, store and harness energy around the globe is undergoing a period of major change.

“A global ecosystem has begun to emerge to underpin the innovation and scaling of electrification technologies.”

As well as pioneering products in the renewable energy space, Ampcontrol has been using its engineering expertise to already assist with the transitioning mining industry.

Alongside Tritium, Ampcontrol was a winner in the global ‘Charge On Innovation Challenge’ in May 2022. The joint submission was an end-to-end mining haul truck battery swap solution that is fully automated, relocatable, scalable and cell agnostic. In a drive-in/drive-out recharging station, an autonomous transfer robot swaps batteries in 90 seconds, significantly reducing safety risks and increasing productivity by excluding personnel from the swaps process.

Henderson said: “One of the areas Ampcontrol identified as a need of the industry was assisting businesses with the next steps to get to the future state of electrified mining operations. When businesses think ‘I need energy’ to perform certain functions, the first instinct is often to acquire more energy. Our expertise at Ampcontrol is to help businesses use the materials they already have available, in a different way.”

Ampcontrol says it recognises the importance of partnerships and collaboration in developing technology solutions to enable a competitive advantage in a net-zero carbon environment.

“It is important to demonstrate we work alongside other businesses to contribute to the low carbon economy transition and to the responsible sourcing of prime materials to enable a competitive advantage in a net-zero carbon environment,” Henderson said.

The EMC has launched a call out to companies in the tech, renewable and manufacturing industries that can provide ground-breaking solutions to long haul EV trucks and associated charging infrastructure for mine sites and global supply chains.

Driven by collective demand for electric equipment across the EMC’s operating sites, spread over six continents, the consortium is looking to form synergies between mining and non-mining industries to accelerate decarbonisation solutions across the industry – the mining industry currently contributes 8% of the globe’s emissions.

Ampcontrol joins over 20 miners and suppliers to the sector that includes Newcrest, South32, Barminco and Epiroc to create the EMC with the ambition to accelerate progress towards the fully electrified zero CO2 and zero particulates mine.

Zero Automotive overcoming barriers with BEV conversion offering

Zero Automotive is one of several Australia-based companies looking to supply the clean and green light utility vehicles the domestic hard-rock sector requires over the next decades to achieve crucial sustainability goals while retaining high productivity levels.

Thanks to the support of a significant copper-gold miner in Australia, its membership of the Electric Mine Consortium (EMC) and METS Ignited backing, the company finds itself in a strong position to deliver these machines against a backdrop of supply chain issues and ever-evolving safety and regulatory requirements.

“We’ve got commitments for six machines altogether and are in the process of offering our production version to the market,” Dan Taylor, Business Development Manager for Zero Automotive, says.

The first and second units are already running at OZ Minerals’ Carrapateena copper-gold mine in South Australia – Zero Automotive’s home state.

The first machine – a ZED70 Ti™ battery-electric light vehicle – was originally delivered to the mine at the back end of 2020 for testing. After successful trials, the company acquired this unit outright and, in early-2022, added a second Zero Automotive ZED70 Ti to enable its workforce to familiarise themselves with the capabilities and charging methodology that come with electric light utility vehicles.

Since then, the company has delivered a third ZED70 Ti conversion to Barminco, which is now on site at its client IGO Ltd’s Nova nickel-copper-cobalt operation in Western Australia. This vehicle is the first single cab conversion developed by Zero Automotive and will be deployed to site foremen to allow the mining contractor to gain a good understanding of its capabilities.

All three of these machines – and the three to follow – are based off battery-electric conversions of the Toyota LandCruiser 79 Series, a vehicle that has been part of the Australian mining landscape for many years.

The modular nature of the Zero Automotive platform enables its long-life battery energy system to be reused in multiple chassis, lowering the total lifecycle cost of the fleet as well as the cost of Scope 1 emissions, according to the company.

They also include dual AC-DC charging with the CCS Combo2 connection, which is becoming increasingly standardised in the mining space.

Data and feedback from the second OZ Minerals machine and the initial Barminco vehicle will be fed back into the EMC ecosystem under the Light and Auxiliary Equipment Working Group as part of the consortium’s continual improvement and knowledge sharing remit.

The EMC said of the consortium’s ongoing light and auxiliary equipment electrification ambitions: “Converting light and auxiliary vehicles as rapidly as possible to electric is key to the industry building the broader understanding and familiarity with electric equipment and infrastructure that will accelerate adoption across all aspects of operations.”

The EMC is a growing group of over 20 mining and service companies driven by the imperative to produce zero-emission products for their customers and meet mounting investor expectations. The objective of the EMC, backed by METS Ignited, is to accelerate progress toward the zero-carbon and zero-particulate mine.

The following three machines are also expected to be deployed to EMC members, with METS Ignited agreeing to provide some A$400,000 ($297,938) of funding towards the diesel-to-battery conversion projects outside of the vehicles already delivered to OZ Minerals.

“The key thing with all of these vehicle deployments is the ZED70 Ti being able to do the job the miners need to perform safely and reliably, getting the associated charging infrastructure right and working with key stakeholders on the change management process,” Dave Mitchell, founder and CEO of Zero Automotive, says. “Operators also need to get used to the power under the hood and how to maximise the battery re-charging capabilities when going down ramp.

“As a matter of course, we train up and educate the sites about the best way to utilise these vehicles,” he said.

To this point, the two prototype vehicles already operating out at Carrapateena have shown that they can work for a typical shift without requiring a re-charge and can then utilise the battery’s AC/DC-DC fast-charge option during shift changeover to enable another user to run the machine for the following shift.

The use of LTO (Lithium Titanate Oxide) battery chemistry and a 60-kWh battery capacity has been behind this performance. This electric motor can generate continuous power of 75 kW and peak power of 134 kW, plus 358 Nm of continuous torque. These values will be increased to 100 kW, 200 kW and 520 Nm (1,200 Nm peak) for the production version.

To this point, the power dimension has often been the main metric quoted with any battery-electric machine, but Taylor pointed out that safety and regulatory considerations were often the biggest barriers to overcome in terms of getting machines operating at underground mines – a hurdle that Zero Automotive has cleared.

“We were able to successfully commission our second ZED70 Ti for OZ Minerals within two days of the machine arriving on site,” he said. “A lot of people are putting out offerings for light utility vehicles, but the required risk analysis in terms of deploying a vehicle underground has not been successfully worked through. This is rightfully a high bar to clear.

“We address any safety or regulatory considerations during our design process – not when the machine is on site – to make sure that operators can start using them quickly.”

Mitchell adds: “The user case is what we are focused on. That has allowed us to scale our offering quickly and ensure our clients can start running the machine underground as soon as they have it on site.”

Zero Automotive is expecting to deploy the other three machines on its books to the same companies (OZ Minerals and Barminco), but the final two machines of the six to be delivered will be under a revised platform to the original ZED70 Ti.

“It will be a platform that is designed from the ground up that incorporates the desired features and learnings from the first conversions, but we will simplify it to reduce complexity, weight and cost,” Mitchell said. “We’re sticking with the same battery configuration – which has proven itself in terms of power, safety and longevity – but we’re adding some auxiliary power outputs and ensuring the machine is multi-purpose.”

The latter element is tied to the company’s medium-to-long-term ambitions, which include the potential to supply battery-electric machines specific to the extended range space too.

For now, Zero Automotive is focused on getting its machines underground at hard-rock operations, ensuring operators and mining companies start realising the productivity and emission benefits that come with these zero-emission conversions.

Electric Mine Consortium launches Surface Long Haul EV Challenge

The Electric Mine Consortium (EMC) – made up of Evolution Mining, South32, Newcrest and a total of 21 major industry players – has launched a Surface Long Haul EV Challenge, calling on the automotive and electric vehicle (EV) industry for solutions in its mission to establish decarbonised mine sites.

The EMC’s call out to companies in the tech, renewable and manufacturing industries is looking for ground-breaking solutions to long haul EV trucks and associated charging infrastructure for mine sites and global supply chains.

Driven by collective demand for electric equipment across the EMC’s operating sites, spread over six continents, the consortium is looking to form synergies between mining and non-mining industries to accelerate decarbonisation solutions across the industry – the mining industry currently contributes 8% of the globe’s emissions.

EMC Founder and Director, Graeme Stanway, explains there’s currently no equipment and associated infrastructure solution that’s available at scale, in line with mining companies’ operational needs.

“The mining industry’s path to electrification is where the car industry was 10 years ago,” Stanway said. “We have the technology, but it needs acceleration and adaptation to meet the needs of varied mine sites across the world.”

He says there’s a big opportunity to recreate mining from a place of siloed communication between companies to a point where collective strategy drives the industry to drastically reduce and ultimately eliminate carbon emissions, through electrification.

“We have the world’s largest data platform of shared knowledge surrounding renewables in mining,” Stanway said. “Through the Surface Long Haul EV Challenge, we’ll be working to accelerate, pilot and convert all new fleets to electric with detailed use case studies for knowledge sharing across the industry.

“If we can solve this for our freight in mining, imagine the impact we can have on the rest of the transport market. Mining has a great opportunity to flip the perception…from being seen on the wrong end of the ledger, to being a leader.”

The EMC is now seeking businesses who can design or supply electric long-haul equipment solutions.

Electric Mine Consortium partners with AWS on world-first mine decarbonisation platform

Australia’s Electric Mine Consortium (EMC), made up of some of the world’s leading mining and service companies, has announced it is working with Amazon Web Services (AWS), an Amazon.com company, to accelerate the electrification of mine sites globally.

Announced at AWS Summit 2022, EMC is using AWS’s depth and breadth of services, including machine learning, business intelligence and storage, to build the world’s first mining data platform, to capture real-time information on mine decarbonisation from sites globally.

To drive decarbonisation, mining companies can use the platform to measure energy storage levels and electrical infrastructure use from global mine sites to accelerate the creation of a cleaner, more electrified future in mining, EMC said.

Co-founder of the EMC, Graeme Stanway, says the platform can help enable EMC members to share sustainability insights and analyse the outcomes of adopting electrified mining infrastructure and sustainable operations.

“The way we generate, store and harness energy around the globe is changing drastically,” Stanway said. “EMC’s collaboration with AWS will help see us at the forefront of this change, driving the mining industry’s electrification at scale.”

Stanway said the industry is crying out for tools to decarbonise due to tightening government emission reduction targets, increasing environmental, social and governance pressure, and the industry being responsible for 7% of the greenhouse gas emissions globally.

“Like the electric vehicle industry, electric mines are the future” Stanway said. “Not only can they be safer through the eradication of diesel particulates, pollution, noise and vibrations, they can also be more targeted, precise and effective when it comes to mining, and yield stronger results than traditional mines with minimal ground disturbance.”

As part of the initiative, EMC created a “data lake” using Amazon Simple Storage Service (Amazon S3), a cloud object storage service, that can securely store thousands of datasets from the consortium’s mines, including data on energy consumption and renewable energy infrastructure output.

EMC can then clean the data and run data pipelines using AWS Step Functions, a low-code, visual workflow service; AWS Glue, a serverless data integration service; and AWS Lambda, a serverless, event-driven compute service. AWS Glue can provide EMC with data catalogue functionality, and AWS Lake Formation, a service that makes it easy to set up a secure data lake in days, can deliver security and access control.

Amazon QuickSight, a business intelligence service (screenshot pictured), can allow everyone in the consortium to explore and understand mining data through user-friendly interactive dashboards that identify efficiency practices that may reduce emissions, according to EMC.

Also, using Amazon SageMaker, a fully managed service to build, train, and deploy machine learning models, EMC can train machine-learning models to predict energy usage spikes at mines and track the carbon efficiency of deploying sustainable energy infrastructure.

Sarah Bassett, Head of Mining and Energy, Australia at AWS, said: “Data capture and analysis is essential to mining operations, and AWS is helping consortium members to share their critical datasets and collective insights to drive the digitisation and evolution of the industry. I am excited to be collaborating with the EMC and its consortium members to improve the design of mines globally and accelerate the industry’s journey to decarbonisation on the global scale.”

The EMC is a growing group of over 20 mining and service companies. These companies are driven by the imperative to produce zero-emission products for their customers and meet mounting investor expectations. Thus, the objective of the EMC is to accelerate progress toward the zero-carbon and zero-particulate mine through:

  • Resolving key technology choices;
  • Shaping the supplier ecosystem;
  • Influencing policy; and
  • Communicating the business case

The EMC is emerging as a key vehicle for the decarbonisation of the mining industry, particularly for underground operations, and will remain responsive to the rapidly changing external environment.

Members include OZ Minerals, Newcrest Mining, Gold Fields, IGO, South32, Blackstone Minerals, Evolution Mining, Barminco and Iluka Resources.

Polymathian, SimGenics, Simulation Engineering Technologies, MathWorks, First Mode to tackle electric mine simulation tasks

Five teams have been selected to join the Think & Act Differently (TAD) ideas incubator, powered by OZ Minerals and Unearthed, tasked with developing and testing an open architecture simulation platform to develop electric mine designs, with the goal to achieve zero scope one emissions.

Last September, the Electric Mine Consortium launched the Electric Mine Simulation crowd challenge in partnership with the (TAD) ideas incubator, noting that electrification of mine sites remained a critical step change needed for the mining industry to achieve a zero-carbon future.

“Switching to electrified solutions and renewable energy represents a transformational shift that will change the way mines are designed,” OZ Minerals said. “This challenge is about using simulation to understand the impacts of electrification on mine design, infrastructure and energy management.”

The crowd challenge closed in November last year and attracted 179 participants from 36 countries, resulting in 23 submissions. Five teams have now been selected to join the TAD incubator where they will be supported to develop and test their simulations.

Finalist teams include:

  • Polymathian – Colin Eustace, Michael Dallimore, Steven Donaldson and Mitchel Grice are experts in solving complex planning and scheduling problems for the industry, OZ Minerals said. Their solution is to provide a widely used scalable simulation model platform to model large and complex operations, from mining and processing to full supply chain operations;
  • SimGenics – Abrie Venter and Kobus Viljoen are using a software platform that can integrate continuous and discrete-event simulation tools from multiple vendors into one solution;
  • Simulation Engineering Technologies – Jaco Botha, Henk Jenkinson, Fredrik Sundqvist and Marco Agas are the team behind a mine simulator (SimMine®) that allows for the construction of a complete mine simulation, including development, production and ore handling systems;
  • MathWorks – Wilco Volwerk, Peter Brady, Ruth-Anne Marchant and Sam Oliver are using a mathematical computing software that can be used to model dynamic, discrete and continuous processes with multiple time scales to create a mine simulation framework; and
  • First Mode – Aidan Morgan, Jan Haak and Clara Sekowski represent a creative engineering company, using modelling and simulation to inform design decisions and optimise the use of technology.

The teams will work together to explore and develop concepts for the development of an open architecture simulation platform to develop electric mine designs, with the goal to achieve zero scope one emissions. A use case for testing the value of simulation will be provided by OZ Minerals’ copper-gold mine, Prominent Hill, with further use cases developed in collaboration with the Electric Mine Consortium member companies.

The TAD Incubator program is a supportive environment that includes funding, technical mentoring, opportunities for collaboration, capability uplift and access to mining data and mining operations, OZ Minerals said. The teams will be supported by mining business improvement specialists from Imvelo, Sharna Glover and Alan Bye and Simulation SME Luigi Barone, an internationally recognised expert in artificial intelligence.

Brett Triffett, OZ Minerals’ Transformation Technologist, said: “This challenge will help us learn about the power of simulation together with some really talented and collaborative people, as we accelerate progress towards a fully electrified zero carbon zero particulate mine. The benefit of crowdsourcing, particularly in an area where ideas may come from outside our traditional mining networks, is that we can scour the globe to find start-ups, academics and individuals that we would not have otherwise had encountered.”

Multiple mining companies from the EMC will be able to collaborate on the outcomes of this experiment and we’re excited to see what we can learn about the process as well as the technology. The teams will work together over a three-month period to develop simulation concepts.

OZ Minerals, IGO South 32, Blackstone Minerals, Evolution Mining, Barminco and Gold Fields have committed to significantly reducing their carbon footprint. These seven mining companies, along with a number of partner companies, have come together to form the Electric Mine Consortium, a collaborative group seeking to accelerate progress towards a fully electrified zero carbon and zero particulate mine.

The TAD incubator is powered by OZ Minerals and is focused on themes that prioritise social and environmental responsibility for the future of mining.

State of Play mine electrification report sheds light on benefits, hurdles and risks

More than half of mining industry executives say they would electrify their mine sites for cost reasons, according to the latest State of Play report on electrification.

With the mining industry rapidly adopting new technologies to decarbonise their operations, the Australia-based State of Play platform has, again, sought to gather industry perspectives on the reasons companies are pursuing their shift away from fossil fuels.

The latest report follows the inaugural State of Play: Electrification report, released in 2020. This report, in part, led to the formation of the Electric Mine Consortium, a collaboration between mining and service companies aiming to accelerate progress towards the fully electrified zero CO2 and zero particulates mine.

The findings from the latest report – which took into account 450-plus individual surveys, five industry webinars and workshops and five interviews with “thought leaders” – have reinforced that mine electrification is a foundation enabler for the clean energy transformation of mine sites.

“The mining industry sees it as one of the most pressing transformation imperatives for the industry, facilitating precision automation and the digitisation of mine operations, whilst improving environmental and health outcomes,” it said.

At the same time, the report acknowledges that mine electrification technology is currently undergoing a “maturation process” with 49% of mining CEOs referenced in the report believing it will take existing mines on average five-to-10 years to electrify.

“Much of the technology for full electrification of mine sites is available today, however a significant knowledge gap exists across industry relating to the capability of electrified mines and the strategy for implementation,” it said.

Of the industry executives surveyed for the report, 57% expect the energy transition to be ‘the’ global trend that will have the biggest impact on the industry over the next 15 years.

Close to 90% (89%) expect mine sites will electrify within the next 20 years and 61% expect the “next generation” of mines will be all-electric.

In keeping with this, 83% expect renewable energy technologies will significantly change mining operations over the next 15 years; and 98% view mine automation as ‘the’ technology to benefit the most from electrification.

The responses related to benefits expected from this transition brought up some of the most interesting insights into the mine electrification evolution, indicating there are environmental, cost and reputation risk advantages associated with electrifying operations.

For instance, of the survey respondents, just over 90% (91%) expected the shift to an electrified system to create opportunities for new business models, while just over half (53%) say they would electrify their mine sites for cost reasons. The latter indicates that the cost of operating, establishing and maintaining new electrified equipment and infrastructure is now at a point where it could not only compete, but provide an economic advantage over fossil fuel-powered operations in the long term.

Close to four-fifths of respondents (79%) expect there to be a health-related industry class action in the next 15 years – indicating the reputational risk that could come with maintaining the operational status quo.

Some 71% view processing and 68% view extraction as having the greatest leverage in decarbonising the mining value chain, the report confirmed, while 46% expect innovation in carbon emissions and 42% expect innovation in diesel replacement will have the greatest environmental benefit in their business. Close to 90% (86%) expect transparency of the source of raw materials to become a significant driver of mining company value.

In key areas of the value chain, miners are faced with distinct choices of which technology to invest in (eg what type of battery storage technology, swap versus fast charging, etc). Of the survey respondents:

  • 60% believe miners should begin transitioning to an all-electric system with installing renewables. Electrical infrastructure was second with 37%, with heavy mobile equipment third with 32%;
  • 87% expect solar will become the most widely used energy source in the industry in the next 15 years, followed by gas, wind and diesel (58%, 44% and 39%, respectively);
  • 76% expect remote mine sites will use batteries to supplement renewables, followed by diesel with 53% and demand management at 42%;
  • There is no consensus as to which energy source will power heavy mobile equipment between lithium batteries, hybrids and diesel (28%, 21% and 18% respectively); and
  • 54% expect infrastructure to be the main challenge for transitioning mine sites to electric.

Of these stats above, the lack of consensus as to which energy source will power heavy mobile equipment is as enlightening as it is expected.

Battery-electric technology has matured to the point where one would expect it to dominate in the underground space, followed closely by fuel cell power, hybrids and some form of trolley, but it is a lot harder to predict the winner in the open-pit mining space, with major miners pursuing different developments related to hydrogen, batteries, trolley assist and alternative fuels.

“The mass adoption of electrification technology and storage systems to power mine sites has so far been slow,” the report stated. “It is clear that as an industry, this knowledge gap will need to be confronted largely through testing and piloting, which allows for the development of case studies for application, economic models and best practice guidelines.”

Of survey respondents:

  • 88% see cost as being the major risk of electrifying a mine site;
  • 63% report that risk aversion is holding back the implementation of electrification technologies;
  • 18% are willing to accept increased risk in asset design to increase financial returns; and
  • 41% are primarily focusing their innovation efforts on energy.

The report authors say the industry should focus on collaborating to overcome the barriers that are beyond the capacity of any one individual company to address, with such efforts requiring the mobilisation of policy makers, miners, service companies, investors and researchers in order to achieve the scale, capital and influence to drive success.

Of survey respondents:

  • The preferred partnering approach for achieving breakthrough innovations is collaborating with selected partners (65%);
  • The majority believe the best way the government can support innovation is through regulation and collaboration (#1 and #2, respectively);
  • 85% believe broad industry standards for battery types are required.
  • 52% see miners as the biggest group driving investment in electrification followed by suppliers and investors (39% and 38%, respectively); and
  • 60% believe the industry should focus its health risk innovation on airborne particulates.