Tag Archives: emissions

MaxMine talks up data-led emission reductions for open-pit mines

MaxMine has been talking up the potential of data in the quest for reducing emissions and boosting productivity at mine sites, with Tom Cawley, Executive Chair and Interim CEO, arguing that there is still plenty of low hanging fruit for mining companies to leverage on their way to achieving longer-term net zero mining targets.

MaxMine, the company says, is an automated, high-resolution data-based business reporting tool that combines advanced data acquisition technology with AI analysis to fully optimise mobile equipment and operator performance within mining and other mobile equipment-based operations, measuring performance differently and using gamification to change behaviours.

According to Cawley, the average open-pit mine can reduce Scope 1 emissions by up to 10-15% by leveraging data, with MaxMine insights enabling this average open-pit mine to improve productivity while also reducing its carbon footprint by around 15,000-20,000 t of CO2.

IM put some questions to Cawley to find out more.

IM: In terms of your expanding product portfolio, where are clients receiving the biggest and potentially quickest return on investments (ROIs) from your solutions?

Tom Cawley, Executive Chair and Interim CEO of MaxMine

TC: MaxMine has the most extensive dataset in the open-cut load and haul mobile mining equipment sector. We continuously collect data from all sensors across 10 original equipment manufacturers or equipment manufacturers. We have around eight million hours of data, enabling MaxMine to provide unique levels of measurement in the mining sector and equip us with an unparalleled range of potential applications. This enables us to cover a broad scope across all mines while delivering tailored solutions to our clients, depending on their requirements from site to site.

The areas of the highest value proposition for our clients include improved TMM (total material moved) by increased payload, reduced cycle times via driver feedback, improved haul road conditions, enhanced safety and faster incident investigations. Cost reductions are delivered by reduced queueing, off-haul travel, idle time, and improved tyre life. High-resolution data is used to measure the performance of and diagnose mining trucks delivering greater efficiency via engine performance improvements and increased availability via predictive analytics and faster fault resolution.

IM: Although you have a specific product focused on decarbonisation (MaxMine Carbon), would you say the majority of your solutions are providing emission reduction benefits? In terms of adding new clients, is this where a lot of the emphasis is?

TC: Yes, there is a strong correlation between productivity and fuel intensity reduction. The better productivity, the better the carbon intensity.

MaxMine Carbon enables mine sites to measure fuel burn on every asset, every second of the day. MaxMine’s high resolution data allows the difference between business as usual and improved operations to be measured, allowing the fuel saved to be included in the productivity benefits.

MaxMine’s high resolution data is used to:

  • Measure actual truck performance, identify trucks operating below design efficiency and provide diagnostic information; and
  • Provide granular feedback to drivers, which can be used to reduce fuel burn.

MaxMine Carbon isn’t only a separate fuel-saving feature; its capability allows open-cut mining companies to measure, manage and reduce their carbon footprint associated with Scope 1 diesel emissions and reduce operating costs related to diesel consumption.

IM: Where is the development of MaxMine Carbon for underground mining? What timelines do you have around the development and rollout of this solution?

TC: Open-cut mining is a large sector and offers significant opportunities for growth. It is much more energy-intensive at the equipment level compared with underground mining.

MaxMine is growing robustly in this area, and we’ll continue focusing on further penetration in the open-cut mining space in the near and medium term.

IM: Is your market proposition stronger at bulk mining operations than others?

TC: Our market is focused on open cut-mining and larger-size trucks, with a size class greater than 100 t.

IM: Outside of your existing portfolio, where do you see room for growth with different solutions? Are you actively engaged in pursuing such opportunities?

TC: We continue to focus and remain disciplined on our core markets, and our unique selling proposition delivers huge opportunities for MaxMine and the open-cut mining industry.

Vale gears up for low-carbon iron ore briquette production in Brazil

Vale has started load tests of its iron ore briquette plants at the Tubarão Unit in Vitória, Brazil, as part of a project it believes could eventually reduce steel industry CO2 emissions by up to 10%.

The load tests are part of the plant’s commissioning and are one of the last stages before production begins, it said.

Vale’s CEO, Eduardo Bartolomeo, said: “This is a historic moment for the steel industry. After several years of development in Brazil, we are offering an innovative product that will support our clients in the challenge of decarbonising their operations and we are meeting demands from society to fight climate change.”

The briquette is produced from the low-temperature agglomeration of high-quality iron ore using a binder technology solution, which gives the final product high mechanical strength.

Announced by Vale in 2021, the briquette has the capacity to reduce greenhouse gas emissions in steel production by up to 10% compared with the traditional blast furnace process by eliminating the carbon-intensive sintering stage. This reduction is significant when considering that the steel industry is responsible for around 8% of the world’s emissions.

The product also reduces the emission of particulates and gases such as sulphur dioxide and nitrogen oxide, as well as eliminating the use of water in its production. The briquette can also be used in the direct reduction route, replacing the pellet.

The first briquette plant in Tubarão (pictured, photo: Rafael Coelho) is scheduled to start up this year and the second plant at the beginning of 2024. They will have the capacity to produce 6 Mt/y of briquette. The two units were originally dedicated to the production of pellets and were converted for briquettes. Investment in the project amounted to $256 million and generated 2,300 jobs during construction.

Vale began developing briquettes around 20 years ago at the Ferrous Technological Center in Nova Lima (Minas Gerais). It is part of the evolution of iron ore products offered by the company throughout its history, the result of significant investments in research and innovation. Until the 1960s, the basic product was high-iron lump. As the supply of lump fell, the first pelletising plants were set up in Brazil, which allowed the use of fine ore (pellet feed) and continue to be important for the steelmaking chain. The briquette, as well as pellets, are part of Vale’s portfolio of high-quality products. The company expects to expand its production capacity to 100 Mt/y of briquettes and pellets after 2030.

The briquette is also included in Vale’s strategy to reduce its Scope 3 emissions, related to the value chain, by 15% by 2035.

The company also aims to reduce its net direct and indirect carbon emissions (Scope 1 and 2) by 33% by 2030, as a first step towards becoming a zero-carbon company by 2050. Vale has already signed more than 50 agreements with clients to offer decarbonisation solutions, which account for 35% of the company’s Scope 3 emissions. Among the proposed solutions is the construction of briquette plants co-located on the premises of some customers.

Among the agreements signed, three aim to set up “Mega Hubs” in Middle Eastern countries (Saudi Arabia, the UAE and Oman) to produce “hot-briquetted iron” (HBI), in order to supply the local and transoceanic markets, with a significant reduction in CO2 emissions. It is expected Vale will build and operate iron ore concentration and briquetting plants at the hubs, supplying the raw material for the HBI plants, which will be built and operated by investors and/or clients. Vale is also studying the creation of similar hubs in Brazil, though no location has yet been defined.

Minnovare’s Production Optimiser gold output, sustainability benefits highlighted by Gangemi

One of Australia’s leading decarbonisation and sustainability experts says Western Australian gold producers are not moving fast enough to reduce carbon emissions.

“Some are leading in the carbon space, but most are slow in implementation,” Adam Gangemi, Managing Director of Super Smart Energy, an environmental services company based in Perth, said. “It is time to see more action.”

Gangemi says there are cost-effective solutions to reduce emissions on mine sites that will impact the bottom line, but mining organisations aren’t taking advantage of the technology options that are available on their doorstep.

Speaking on a recent webinar, Gangemi said a Western Australian innovation, Minnovare’s underground drilling optimisation technology, the Production Optimiser, was increasing drilling efficiency, resulting in reduced CO2 emissions, and enabling companies to drill faster, cheaper and more sustainably.

“Minnovare’s Production Optimiser is one of the better solutions that’s come across my desk,” he said. “Even small projects can get big bang for their buck. This drilling solution is one example where a small investment can deliver a 10-fold return through increased production, and significantly avoid those mine site emissions simultaneously.

“Not having to haul or process waste material is a smart way to do this and it is delivering huge results not only from an emissions perspective (thousands of CO2 per year) but also increasing production. If we start to look at opportunities that will both increase production and have the benefit of reducing emissions, this will be a no brainer for underground mining companies.”

Gangemi compared a range of Western Australia Goldfields producers and found that most could be saving anywhere between 1,000 to 8,000 t of CO2 emissions each year by using the Minnovare technology.

“By using the Production Optimiser on site, you drill more accurately and that means more gold on the trucks, less waste and a significant reduction in emissions,” he said. “If we talk about avoiding even 1,000 t of emissions, a WA gold producer could be taking the equivalent of 300 Hilux utes (utility vehicles) off the road every year.”

To demonstrate the emissions savings, Minnovare has launched a new Environmental Impact Calculator, allowing mining companies to quickly compute the emissions they could avoid on site by using the technology.

The Minnovare calculator shows how CO2 emissions are reduced through improved drilling accuracy and uses the company’s own data to forecast emission savings across an operation.

Gangemi’s benchmarking of Australian gold miners showed a greenhouse gas emissions intensity range between 0.2-1.7 t CO2-e/oz of gold.

Mick Beilby, Director and co-Founder of Minnovare, said: “We know the industry wants sustainable outcomes. Through using our technology, companies will achieve less dilution and deviation from an increase in drill quality and this results in less waste.”

Gangemi describes the calculator as ‘very accurate’ and encourages Western Australian producers to use the calculator to understand the savings they can achieve implementing technology products such as the Production Optimiser.

Mitsui and Rio Tinto to explore low-emission supply chain options

Mitsui & Co has signed a memorandum of understanding (MoU) with Rio Tinto to jointly explore opportunities for reducing emissions and transforming the world’s supply chains.

Under the MoU, Mitsui and Rio Tinto will work closely together to examine more sustainable measures such as reducing the carbon content of raw materials for iron and steel production; developing new renewable energy; supplying alternative fuels such as ammonia, methanol and hydrogen; decarbonisation in marine transportation; decarbonisation of mobility at mining sites; and initiatives like nature-based solutions, carbon credits and others.

The new partnership builds on Mitsui and Rio Tinto’s long history of collaboration, stretching back to the beginnings of the Robe River Joint Venture in Western Australia, which this year celebrated 50 years of iron ore shipments to Japan. The MoU combines Mitsui’s vast network, assets and accumulated industry knowledge with Rio Tinto’s grand-scale supply chain and leading position in the mining & metal industry, the companies said.

Ventilation on demand solutions continue to find favour, Howden says

Ventilation solutions provider, Howden, says it is continuing to register strong demand for ventilation on demand (VoD) solutions from the mining sector, on continual cost control measures, improved safety requirements and the evolving need to chart emissions underground.

The company recently added Cooling on Demand (CoD) functionality to its Ventsim CONTROL software, which reflects this market demand.

Ventsim CONTROL uses intelligent software connected to Howden or third-party hardware devices to remotely monitor, control and automate airflow heating and cooling to deliver safer, more productive, and lower cost ventilation for mines, the company says. The Ventsim CONTROL solution also offers a 3D modelling capability within the software, which helps users to better predict and control air flows based on what is evidenced in the simulation.

In the case of CoD, this means users can monitor temperatures at deeper levels and push back cooled air more efficiently.

Upon release of the solution last year, Howden said the CoD update aligned with trends it was seeing in the industry towards deeper mines requiring cooled air to achieve higher standards of health and safety for workers.

“Currently, many mines put a cooling plant at surface level and cool air regardless of its destination or where it’s needed as there aren’t intelligent controls to pinpoint the localised need, which is often at deeper levels,” Howden said. “These new controls ensure the cool air goes where it is required, saving operating and energy costs.”

The company is currently in the process of lining up a trial of this new functionality with an existing Ventsim CONTROL customer.

Howden has also won several Ventsim CONTROL contracts across the globe, including in South America, Asia Pacific and Europe, of late.

Jose Pinedo, Ventsim Sales Manager, said most of these contracts reflected the mining sector’s ongoing focus on cost control, as well as those ‘net-zero’ commitments.

“All the different sites had a payback target in mind, but some of the sites also wanted to know what the implementation of the system would do for their CO2 emissions,” he told IM.

Within Ventsim CONTROL, there is an in-built energy reporting tool to show clients their ongoing energy consumption. Following customer requests and in-house development work, Howden has been able to adapt this to generate a rolling CO2 emission indicator that clients can monitor.

“The reduction in energy correlates directly to a reduction in tonnes of CO2 emissions,” Pinedo said of the reporting tool. “This means, in addition to what the system will provide in operational terms and operating costs, it can also outline to clients how it will assist them in meeting environmental goals.”

Leo Botha, Ventsim General Manager, said the ability for Ventsim CONTROL to reduce the energy consumption associated with ventilation and the direct correlation between these savings and CO2 emission reductions is allowing Howden to assist miners in hitting their environmental goals.

“Up front, when you are having the discussion and talking to mines about energy savings, you are also directly talking about CO2 emission reductions and how this can be used in ESG reporting,” he said.

This increased carbon emission visibility, plus expectations of stricter regulations in key mining jurisdictions, is likely to lead more clients towards the use of VoD solutions, according to Pinedo.

“For instance, with Australia adopting stricter diesel particulate emissions, the industry is facing two options in terms of keeping up with legislation: either you retrofit your fleet so you’re running more efficient and ‘cleaner’ diesel engines (US Tier 4 F/EU Stage V) or electric equipment, or you increase your ventilation flow to meet the new emission requirements,” he said.

Even if a mine chose Option A – retrofitting their fleet – the ventilation flow requirements may still need to increase, Pinedo explained.

“Without a VoD system, you must have a ventilation system set up based on the required air for x number of vehicles and personnel, regardless of if they are operating at all times,” he said.

A VoD system, however, allows mines to push air only to where it is needed based on the vehicles, personnel and infrastructure in place and operating at that given time.

With more mixed fleets of mobile mining equipment expected in the future made up of battery-electric, hybrids and diesel-powered equipment, the benefits of a VoD system able to tap into existing infrastructure for telematics and positioning will be highlighted further, enabling mines to ventilate based on the type of engine/battery the machine is powered by and if there is an operator in the cab.

“What we’re offering through Ventsim CONTROL is to use all these existing tools and optimise everything to comply with where legislation is heading and the evolution of ‘net zero’ mining,” Pinedo said.

Agnico Eagle’s Fosterville mine is looking to do exactly this in what Howden says is an Australian mining first.

The operation, having already installed Ventsim CONTROL Level 3 (scheduling and flow control), is progressing to an installation that will see the mine’s tracking system integrated to Ventsim CONTROL Level 4. This will provide real-time feedback on the vehicle locations in Ventsim CONTROL to adjust the ventilation automatically based on demand.

Ventsim CONTROL software also continues to gain appreciation from customers for its safety capabilities.

“One of the features we have in Ventsim CONTROL is related to fire simulation,” Pinedo said. “We also have this in our Ventsim DESIGN software with scenario-based simulations, but the facility on Ventsim CONTROL connects to all your communication infrastructure underground to take an instant snapshot of the status as a fire is happening.

“From a planning point of view, this allows operations to have a much quicker response time based on an accurate, real-time picture of what is going on underground. This provides another tool to allow them to take the right decisions when and if needed.”

ABB to highlight energy-saving potential of electric motors and VSDs with new digital service

A new digital service from ABB will, the company says, enable industrial operators to maximise energy efficiency and boost sustainability by identifying motor-driven equipment in their facilities with the best energy-saving potential.

The ABB Ability Digital Powertrain Energy Appraisal service will draw on data measured from fleets of digitally connected electric motors and variable speed drives (VSDs) to show where and how much energy can be saved by upgrading to the latest high-efficiency technologies. Industrial operators can then make data-driven decisions when prioritising investments, the company says.

Upgrading to energy-efficient technology is one of the simplest and most cost-effective ways to lower energy consumption and associated greenhouse gas emissions, ABB says. Across the world’s 300 million industrial motor-driven systems, there is potential to cut global electricity demand by up to 10% by switching to high-efficiency systems.

“The challenge for an industrial operator is knowing where to start in a fleet of hundreds of electrical motors,” Adrian Guggisberg, Division President of ABB Motion Services, says. “ABB developed the new Digital Powertrain Energy Appraisal service to provide clarity by analysing motor data and identifying where businesses should focus investment to maximise energy-efficiency gains that reduce operating costs and CO2 emissions.”

Traditionally, an energy efficiency appraisal requires time-consuming manual collection and evaluation of data and covers only the largest motor-driven systems on a site as these are typically seen as having most potential for saving energy, ABB says. However, this could overlook significant energy-saving opportunities for electric powertrains that are smaller, less accessible or where energy-saving potential is not obvious.

The new digital appraisal service uses a plug-and-play approach to simplify energy efficiency assessments by pulling operational data remotely from across an entire fleet of digitally-connected motors. This provides much deeper insight into the business case and carbon footprint benefits of upgrading to high-efficiency motor-driven systems, while being much safer and faster.

South32 to leverage KCC low carbon caustic soda shipping solutions for Worsley

KCC Chartering AS and a subsidiary of South32 Limited have signed a six-year contract of affreightment (COA) for shipments of caustic soda to South32’s Worsley Alumina refinery in Western Australia.

KCC Chartering is a subsidiary of Klaveness Combination Carriers ASA, a company the refinery has had a relationship with for more than 30 years, servicing the Worsley site with four generations of combination carriers. KCC says it is the world leader in combination carriers, owning and operating eight CABU and eight CLEANBU combination carriers for wet and dry bulk cargoes.

The COA establishes a framework for how KCC and South32 will work together to deliver further reductions in carbon emissions associated with South32’s caustic soda ocean freight to Australia.

The agreed sustainability framework includes detailed CO2 emission reporting and the establishing of trajectories for annual CO2 reductions targets, and arrangements for how to co-operate to reach the set targets, KCC said. It further includes an ambition to jointly establish a pathway towards future zero emission freight.

KCC’s CEO, Engebret Dahm, said: “This contract marks another important milestone in the longstanding relationship between South32 and KCC. In this next era of our relationship, together we will address the main challenge of our generation – climate change. We have jointly set ambitions to considerably reduce shipping carbon emissions through building on KCC’s low carbon caustic soda shipping solution, which already today provides South32 with a 30-40% lower carbon footprint than competing tanker vessels.”

South32 Chief Human Resources and Commercial Officer, Brendan Harris, said: “We are pleased to continue our relationship with KCC and our joint efforts to reduce greenhouse gas emissions in the maritime supply chain. It’s partnerships like these that contribute to the decarbonisation of our value chain and promote the responsible production of commodities needed in a low-carbon world. At South32, we are committed to achieving net zero operational carbon emissions by 2050 and have set a medium-term target to halve these emissions by 2035.”

Rio Tinto backs accelerated Scope 1 and 2 carbon emission cuts with $7.5 billion of investments

Rio Tinto has outlined a new target to reduce its Scope 1 and 2 carbon emissions by 50% by 2030, more than tripling its previous target. To achieve this, it is setting aside around $7.5 billion of direct investments between 2022 and 2030.

Unveiled during an investor seminar this week, Rio said a 15% reduction in emissions is now targeted for 2025, five years earlier than previously stated, relative to its 2018 baseline of 32.6 Mt (CO2 equivalent – equity basis).

In recognition of the broader carbon footprint of the commodities it produces, Rio says it will accelerate its investment in R&D and development of technologies that enable its customers to decarbonise. Working in partnership with governments, suppliers, customers, academia and others, Rio intends to continue to develop technologies like ELYSIS™ for carbon-free aluminium and multiple pathways to produce green steel.

To meet additional demand created by the global drive to net zero emissions, Rio Tinto will prioritise growth capital in commodities vital for this transition with an ambition to double growth capital expenditure to about $3 billion a year from 2023, it said.

Rio Tinto can decarbonise, pursue growth and continue to deliver attractive returns to shareholders due to its strong balance sheet, world-class assets and focus on capital discipline, it explained.

Some key points from the presentation include:

  • Decarbonisation of the Pilbara will be accelerated by targeting the rapid deployment of 1 GW of wind and solar power. This would abate around 1 Mt of CO2, replace natural gas power for plant and infrastructure and support early electrification of mining equipment;
  • Full electrification of the Pilbara system, including all trucks, mobile equipment and rail operations, will require further gigawatt-scale renewable deployment and advances in fleet technologies
  • Options to provide a greener steelmaking pathway for Pilbara iron ore are being investigated, including with biomass and hydrogen;
  • Options are progressing to switch the Boyne Island and Tomago smelters in Australia to renewable energy, which will require an estimated circa-5 GW (equity basis) of solar and wind power, along with a robust “firming solution”;
  • Development of ELYSIS to eliminate carbon emissions from the smelting process is progressing, with commercial scale technology on track for 2024.

Yamana Gold retains electrification path for Wasamac in new study

Yamana Gold has reiterated a plan to minimise the amount of carbon emissions generated with the development and operation of the Wasamac gold project in Quebec, Canada, in its first study since acquiring the asset from Monarch Gold.

Monarch, prior to being taken over by Yamana Gold, had laid out plans for an underground mine at Wasamac producing 6,000 t/d, on average, with an expected mine life of 11 years. It expected to use a Rail-Veyor® electrically powered, remote-controlled underground haulage system in addition to an almost entirely electric fleet of production and development equipment.

The December 2018 feasibility study by BBA indicated the Wasamac deposit hosted a measured and indicated mineral resource of 29.86 Mt at an average grade of 2.7 g/t Au, for a total of 2.6 Moz of gold, and proven and probable mineral reserves of 21.46 Mt at an average grade of 2.56 g/t Au, for a total of 1.8 Moz of gold. The study forecast average annual production of 142,000 oz of gold for 11 years at a cash cost of $550/oz.

With drilling, due diligence and further studies, Yamana Gold, in studies forming the new feasibility level studies, has come up with baseline technical and financial aspects of the Wasamac project that, it says, underpin the decision to advance the project to production.

This has resulted in a few changes to the Wasamac plan.

For starters, the company plans to use the extract the now 1.91 Moz of reserves quicker than Monarch’s strategy, with a rapid production ramp-up in the first year followed by sustained gold production of approximately 200,000 oz/y for at least the next four years.

Including the ramp-up phase, average annual production for the first five years of operation is expected to be 184,000 oz, the company said, with life of mine production of 169,000 oz/y. Mill throughput has been increased to 7,000 t/d, on average, but the plant and associated infrastructure were being sized for 7,500 t/d. Production could start up in the December quarter of 2026, the initial capital expense was expected to be $416 million and all-in sustaining costs over the life of mine had been calculated at $828/oz.

The use of a conveyor is still within this plan, but a company spokesperson told IM that Yamana was now considering a conventional belt conveyor rather than the Rail-Veyor system.

Yamana explained: “The optimised materials handling system uses ore passes and haul trucks to transport ore from the production levels to a central underground primary crusher. The haul trucks will be automated to allow haulage to continue between shifts. From the underground crusher, ore will be transported to the crushed-ore stockpile on the surface using a 3-km-long conventional conveyor system in two segments.”

Yamana added: “Using a conveyor rather than diesel trucks to transport ore to surface reduces CO2 emissions by 2,233 t/y, equivalent to taking 500 cars off the road. Over the life of mine, the company expects to reduce CO2 emissions by more than 20,000 t.”

The aim to use electric vehicles wherever possible remains in place.

“The Wasamac underground mine is designed to create a safe working environment and reduce consumption of non-renewable energy through the use of electric and high-efficiency equipment,” the company said. “Yamana has selected electric and battery-electric mobile equipment provided that the equipment is available at the required specifications.

“Battery-electric underground haul trucks are not yet available at the required capacity with autonomous operation, so diesel trucks have been selected in combination with the underground conveyor. However, Yamana continues to collaborate with equipment suppliers with the expectation that the desired battery-electric equipment will be available before Wasamac is in operation.”

In tandem with this, the company plans to use a ventilation on demand solution and high-efficiency fans to reduce its power requirements. This will likely rely on an underground LTE network.

“Heating of the underground mine and surface facilities is designed with the assumption of propane burners, but an opportunity exists to extend the natural gas line to the project site,” it added. “Yamana has initiated discussions with the natural gas supplier and will study this opportunity further as the project advances.”

The site for the processing plant and offices is confined to a small footprint strategically located in a naturally concealed area, and the processing plant has been designed with a low profile to minimise the visual impact as well as minimise noise and dust, according to Yamana.

The primary crusher, previously planned to be located on surface, has been moved underground, with the crushed material transported to surface from the underground mining area using conventional conveyors and stored on surface in a covered stockpile to control dust.

Several design improvements to the previous Wasamac plans have also been made to reduce consumption of fresh water to minimise the effect on watersheds, according to Yamana. Underground mine water will be used in the processing plant, minimising the draw of fresh water and reducing the required size of the mill basin pond.

The Wasamac tailings storage strategy is designed to minimise environmental footprint and mitigate risk, it added.

“Around 39% of tailings will be deposited underground as paste fill and 61% of tailings will be pumped as a slurry to the filter plant located approximately 6 km northwest of the processing plant and then hauled to the nearby dry-stack tailings storage facility,” Yamana said.

Strategic phasing of the tailings storage facility design allows for the same footprint as previously planned, even with the increase in mineral reserves, the company clarified. Also, the progressive reclamation plan for this facility minimises the possibility of dust generation and expedites the return of the landscape to its natural state.

HYBRIT partners produce world’s first hydrogen-reduced sponge iron

SSAB, LKAB and Vattenfall say they have now produced the world’s first hydrogen-reduced sponge iron at a pilot scale.

The technological breakthrough in the HYBRIT initiative captures around 90% of emissions in conjunction with steelmaking and is a decisive step on the road to fossil-free steel, the partners say.

The feat from the HYBRIT pilot plant in Luleå, Sweden, showed it is possible to use fossil-free hydrogen gas to reduce iron ore instead of using coal and coke to remove the oxygen. Production has been continuous and of good quality, the companies said, with around 100 t made so far.

This is the first time ever that hydrogen made with fossil-free electricity has been used in the direct reduction of iron ore at a pilot scale, according to the HYBRIT partners. The goal, in principle, is to eliminate carbon dioxide emissions from the steelmaking process by using only fossil-free feedstock and fossil-free energy in all parts of the value chain.

Hydrogen-based reduction is a critical milestone, which paves the way for future fossil-free iron and steelmaking. SSAB, LKAB and Vattenfall intend, through HYBRIT, to create the most efficient value chain from the mine to steel, with the aim of being first to market, in 2026, with fossil-free steel at an industrial scale, they say.

Last year, HYBRIT, a joint initiative of SSAB, LKAB and Vattenfall, began test operations to make hydrogen-reduced sponge iron in the pilot plant built with support from the Swedish Energy Agency. The technology is being constantly developed and the sponge iron that has been successfully made using hydrogen technology is the feedstock for the fossil-free steel of the future, they say.

Jan Moström, President and CEO at LKAB, said: “This is a major breakthrough both for us and for the entire iron and steel industry. LKAB is the future supplier of sponge iron and this is a critical step in the right direction. Progress with HYBRIT enables us to maintain the pace in our transition and, already in 2026, we will begin the switch to industrial-scale production with the first demonstration plant in Gällivare, Sweden. Once LKAB has converted its entire production to sponge iron, we will enable the transition of the steel industry and reduce global emissions by around 35 Mt a year, which corresponds to two thirds of Sweden’s entire emissions. This is the greatest action we can take together for the good of the climate.”

Martin Lindqvist, President and CEO at SSAB, added: “This technological breakthrough is a critical step on the road to fossil-free steel. The potential cannot be underestimated. It means that we can reach climate goals in Sweden and Finland and contribute to reducing emissions across Europe. At the same time, it creates new jobs and export successes. SSAB’s transition means we will reduce carbon dioxide emissions by 10% in Sweden and 7% in Finland. High-strength fossil-free steel will also allow us to help our customers to strengthen their competitiveness. As early as this year, we will deliver minor quantities of steel made using hydrogen-based reduction to customers, and in 2026 we will deliver fossil-free steel at a large scale.”

The hydrogen used in the direct reduction process is generated by electrolysis of water with fossil-free electricity, and can be used immediately or stored for later use, according to the partners. In May, HYBRIT began work on building a pilot-scale hydrogen storage facility adjacent to the direct reduction pilot plant in Luleå.

Anna Borg, President and CEO at Vattenfall, said: “Sweden’s and Vattenfall’s fossil-free electricity is a basic requirement for the low carbon footprint of hydrogen-reduced sponge iron. The breakthrough that we can announce today shows in a very real way how electrification contributes to enabling a fossil-free life within a generation.”