Tag Archives: First Quantum Minerals

First Quantum and AES sign renewable energy deal for Cobre Panama

First Quantum Minerals’ majority-owned Cobre Panama operation has signed a long-term contract with AES Panama for the supply of renewable energy, starting in January 2024.

The agreement establishes that the energy supplied by the electricity generation company to the copper mine will be certified renewable energy from solar, wind and hydroelectric sources.

The CEO of First Quantum Minerals, Tristan Pascall (right), and the President of AES Panama, Miguel Bolinaga, gathered to sign the contract (pictured).

“As a responsible mining company, we recognise our obligation to contribute to the management and mitigation of climate change and part of our contribution is through a transition to clean energy sources in our operations, including Cobre Panamá,” Pascall said.

“The global need to accelerate the transition to the use of cleaner energy will require an increase in the production of minerals and metals, such as copper, used in solar panels, wind farms and electric vehicles. This agreement for the energy transition of our operations is also a logical step to increase the sustainability of our production.”

Miguel Bolinaga, President of AES Panama (left), said: “One of the main goals of AES at a global and local level is to lead the energy transition, which is why for us offering cleaner energy solutions to our clients is a priority.”

The Operations Superintendent of the Panama Copper Power Plant, Boris Batista, said the agreement with AES would cover the plant’s need for more power, and that all this additional power – 64 kW – would come from renewable energy sources.

Other steps would follow in the process of reducing carbon emissions at Cobre Panama. By 2025, 30% of the energy used in Cobre Panama’s operations is expected to come from renewable sources. For its part, the First Quantum Minerals group plans to reduce its carbon emissions in its global operations by 50% by 2030.

Metso Outotec to deliver world’s largest Premier grinding mills to Kansanshi copper mine

First Quantum Minerals (FQM) has awarded an order to Metso Outotec for two very large horizontal grinding mills for the company’s copper mine expansion at Kansanshi in Zambia.

Metso Outotec’s delivery includes two Planet Positive Premier™ grinding mills with a total installed power of 50 MW – the largest Premier grinding mills Metso Outotec has delivered to date.

To meet the need for efficient and fast replacement of the lining systems, as well as ensuring a long wear life, the ball mill will be equipped with the Metso Outotec Megaliner™ and the SAG mill will be equipped with Metso Outotec metallic mill lining and a high-performance discharge system, it explained.

FQM’s Kansanshi mine, located near Solwezi in the North-western Province of Zambia, is among the largest copper mines in the world and the largest in Africa.

First Quantum Minerals is currently working on its further expansion (the Kansanshi S3 Expansion), which includes a standalone 25 Mt/y processing plant that will increase copper production substantially.

Once the expansion is completed, copper production from Kansanshi is expected to average approximately 250,000 t/y for the remaining life of mine to 2044.

The Premier horizontal grinding mills are customisable solutions built on state-of-the-art grinding mill technology, process expertise, and design capability, Metso Outotec says. The Premier horizontal grinding mills are engineered to “excel and create vast possibilities” for customers and applications.

Earlier this week, Metso Outotec was awarded what it says was a major contract for the delivery of sustainable crushing, screening and grinding technologies to a greenfield iron ore project in South America.

NextOre, First Quantum fully commission ‘world’s largest bulk ore sorting system’

A 2,800 t/h MRA ore sorting installation at First Quantum Minerals’ Kansanshi copper mine in Zambia is now fully commissioned and using diversion hardware, Chris Beal, CEO of NextOre, told RFC Ambrian and Stonegate Capital Partners’ Copper Pathway to 2030 webinar on Tuesday.

Presenting alongside speakers from RFC Ambrian, Oroco Resource Corp and First Quantum Minerals, Beal revealed that the diversion process on what he said was the highest capacity bulk ore sorting operation in the world had now commenced, some 16-17 months after the magnetic resonance (MR) based system was installed and testing commenced.

“After a one year sensing-only trial, Kansanshi has now gone forward and commissioned and tested diverting hardware in May that has allowed them to fully transform into an inline bulk sorting system,” he said.

“With the validation of that having just gone by, this now represents the highest capacity sorting plant in the world.”

NextOre was originally formed in 2017 as a joint venture between CSIRO, RFC Ambrian and Worley, with its MR technology representing a leap forward in mineral sensing that, it said, provides accurate, whole-of-sample grade measurements.

Demonstrated at mining rates of 4,300 t/h, per conveyor belt, the technology comes with no material preparation requirement and provides grade estimates in seconds, NextOre claims. This helps deliver run of mine grade readings in seconds, providing “complete transparency” for tracking downstream processing and allowing operations to selectively reject waste material.

The installation at Kansanshi is positioned on the sulphide circuit’s 2,800 t/h primary crushed conveyor belt, with the system taking precise measurements every four seconds for tonnages in the region of 2.5 t to a precision of +/- 0.028%.

“Magnetic resonance technology, in particular, is very well suited to high throughput grade measurement – it is measuring all of the material that is going through,” Beal explained. “And these sensors like to be filled with more material.

“We hope to go larger from here. And we, in fact, have projects ongoing to do that.”

This wasn’t the only reveal Beal provided during the webinar, with the other announcement slightly smaller in scale, yet no less significant.

Seeking to address the lower end of the bulk ore sorting market, the company has come up with a mobile bulk sorting plant that is powered by MR sensors.

This solution, coming with a capacity of up to 400 t/h, has now found its way to Aeris Resources’ Murrawombie mine in New South Wales, Australia, where it is being used for a trial.

At Murrawombie, the setup sees an excavator feed a mobile crusher, with the crushed material then passed to the mobile ore sorting installation (the conveyor, the sensor, the diverter and supporting equipment). The system, according to Beal, provides bulk ore sorting results in a cost- and time-efficient manner.

It has been designed to suit small mines and those seeking to monetise historical dumps, or to provide a rapid test method for bulk sorting to support a potentially much larger bulk sorting plant, Beal explained.

The fully-diesel setup is destined for copper operations globally and potentially some iron ore mines, he added.

First Quantum board signs off development of Kansanshi S3 Expansion, Enterprise nickel project

The First Quantum Minerals Ltd Board of Directors has signed off on the S3 Expansion at the Kansanshi mine and the Enterprise nickel project, both in Zambia.

The approval will lead to work on both projects starting immediately, with the company re-commencing detailed engineering works for the S3 Expansion to determine purchase orders for key long-lead items, including the SAG mill, ball mill and in-pit crushing station; and a mining contractor being mobilised for the Enterprise nickel project in order to commence pre-stripping of the pit in June 2022.

This could see Kansanshi’s life pushed out to 2044 with the introduction of new electrical loading and drilling equipment along with the extension of the current electric trolley assist infrastructure, with Enterprise contributing some 30,000 t/y of nickel concentrate in upcoming years.

“First Quantum has been working constructively with the Government of Zambia’s New Dawn administration as part of their efforts to reform the mining sector, attract investment and increase Zambia’s copper production,” Tristan Pascall, Chief Executive Officer, said. “The approval of the projects reflects First Quantum’s increased confidence in the investment climate in Zambia.”

The S3 Expansion and the Enterprise nickel project are a key part of the company’s brownfield growth strategy, according to Pascall.

“The Kansanshi mine has been a cornerstone asset for First Quantum for 15 years and the S3 Expansion will expand production and extend the mine life for another two decades,” he said. “The low-cost, high-grade Enterprise nickel project is well placed to supply the rapidly growing electric vehicle battery sector.

“The approval of these two projects is an important milestone for the company’s path towards responsible production growth of the metals needed for the global green energy transition.”

The approval of the projects follows the efforts of the New Dawn administration to enhance both the investment climate for mining and to seek commitments from the mining sector to contribute to the national economy and to corporate social responsibility, First Quantum says. These initiatives will help establish a platform for more stable, durable and responsible mining in Zambia.

The Government of Zambia’s commitments address the ease of doing business in Zambia, covering areas such as expediting immigration procedures in exchange for commitments for local employment levels, competitive pricing of power transmission and power procurement from independent sources which in turn will support renewable energy projects, and measures to ensure the ease of importing and exporting goods.

The approvals follow the re-introduction of the deductibility of mineral royalties for corporate income tax assessment purposes that became effective in January. This measure realigned Zambia with international best practice, according to First Quantum. The government’s commitment to improve the predictability of the mining fiscal regime also provides the certainty needed to support large capital investments in Zambia.

“Furthermore, First Quantum and the government have successfully resolved all points of contention that have been stumbling blocks to progress on the S3 Expansion and Enterprise nickel project,” it said. “This includes reaching agreement in respect to the outstanding value-added tax receivable sum and an approach for repayment based on offsets against future mining taxes and royalties.”

The S3 Expansion is expected to transition the current selective high-grade, medium-scale operation to a medium-grade, larger-scale mining operation that will be more appropriate for the higher proportion of primary, lower-grade sulphide ores at depth, First Quantum said. As outlined in the NI 43-101 Technical Report filed in September 2020, the S3 Expansion, when completed, will comprise of a standalone 25 Mt/y processing plant with a new larger mining fleet that will increase Kansanshi’s total annual throughput to 53 Mt/y.

Once the expansion is completed, copper production from Kansanshi is expected to average approximately 250,000 t/y for the remaining life of mine to 2044.

A significant portion of the initial construction works for the S3 Expansion have been previously undertaken with much of the civil and structural work on-site completed, First Quantum said. The remaining work includes completion of the remaining engineering design works, procurement and installation of equipment, electrics, controls and infrastructure. The S3 processing train will comprise of a 28 MW SAG mill and a 22 MW ball mill. The open-pit mine will be expanded to increase the supply of sulphide ore from the Main Pit and extend into the South East Dome deposit. The expanded mining fleet will use similar ultra-class equipment as First Quantum’s other key mines and will benefit from new electrical loading and drilling equipment along with the extension of the current electric trolley assist infrastructure, First Quantum said.

In parallel with the expansion of the mine and processing facilities, the company plans to increase the throughput capacity of the Kansanshi smelter from 1.38 Mt/y to 1.65 Mt/y of concentrate. This will enable the smelter to produce over 400,000 t/y of copper anode.

The total capital expenditures associated with the S3 Expansion is expected to be $1.25 billion, which includes $900 million on the S3 plant and mine fleet and $350 million for pre-stripping of the South East Dome pit. Approximately $800 million of this spending is included in the company’s current three-year guidance released on January 17, 2022, with the balance falling beyond the guidance period. First production from the S3 Expansion is expected in 2025.

The Enterprise nickel sulphide deposit is located 12 km northwest of the Sentinel copper mine. As outlined in the NI 43-101 Technical Report, filed in March 2020, proven and probable reserves at Enterprise total 34.7 Mt of ore at 0.99% Ni.

The Enterprise nickel project will consist of a single, main open pit and one extension to the southwest. It will use the existing 4 Mt/y nickel circuit that was previously built as part of the original Sentinel processing complex. The main workstream to bring the project online will be the pre-strip of waste. The development timeline for Enterprise is expected to be approximately 12 months. At full production, Enterprise is expected to produce an average of 30,000 t/y of nickel in high-grade concentrate.

The total capital expenditures associated with the Enterprise nickel project is expected to be approximately $100 million. Pre-stripping of the Enterprise pit of $60 million is included in the three-year guidance provided earlier this year along with $40 million related to infrastructure and plant commissioning. Expected first nickel production of 5,000-10,000 t of nickel in 2023 is included in the company’s three-year guidance.

Tristan Pascall to take the First Quantum reins in May 2022

First Quantum Minerals has announced that its Board of Directors will appoint Tristan Pascall, currently the company’s Chief Operating Officer (COO), to the role of Chief Executive Officer (CEO).

The appointment will take effect at the Annual General Meeting to be held in early May 2022, at which time Philip Pascall (Tristan’s father), the company’s current Chairman and CEO, will retire from the CEO role and will continue to serve as Chairman of the Board. The company will nominate Tristan Pascall for election as a director at the AGM.

The appointment of Tristan Pascall represents the culmination of a succession planning process led by independent directors on the Board’s Nominating and Governance Committee, comprised of Robert Harding, Andrew Adams and Kathleen Hogenson.

Robert Harding, Chair of the Nominating and Governance Committee and Lead Independent Director, said: “After a thorough search process, we are very pleased to appoint Tristan Pascall as First Quantum’s next Chief Executive Officer. Tristan has demonstrated impressive leadership in his current role as COO as he navigated the successful ramp-up of our largest asset through the challenging environment presented by the global pandemic.

“Tristan’s previous hands-on leadership experience of eight years in Zambia and four years in Panama has given him a deep knowledge of our assets, operating teams and local partners. His practical, on-the-ground experience with our people and projects, combined with lessons learned from the countries where we operate, embodies the company’s culture and makes Tristan the right leader for First Quantum.

“We believe Tristan’s combination of operational, strategic and capital markets experience, as well as the strong stakeholder relationships he has developed, are fundamental to the continuity of our unique core capabilities, namely industry-leading project execution and operational excellence.”

Tristan Pascall joined First Quantum in 2007 and held progressively senior operational roles in Africa and Latin America until 2020 when he served as Director of Strategy and later became Chief Operating Officer in January 2021. Prior to assuming his executive leadership roles, he was a key member of the teams that delivered on several major greenfield and expansion mining projects which now collectively represent most of the company’s net asset value, FQM said. His responsibilities from 2009 to 2015 included the initial development, construction and operating the Sentinel mine in Zambia. Starting in 2015, he led the development of the Cobre Panama mine (pictured), now the company’s largest copper mine with the world’s largest single-throughput copper concentrator plant, and built the operations team which now stands at more than 5,000 people.

Prior to joining First Quantum, Tristan spent eight years in corporate finance and investment banking with a focus on resources and heavy industry in Australia, Europe and Asia.

Tristan Pascall said: “I am very excited to continue to build upon the momentum we have established at First Quantum. It is deeply humbling to be selected to lead such a highly talented team, all of whom have contributed to establishing a unique entrepreneurial culture. As we enter our next stage of growth, I look forward to building on First Quantum’s accomplishments of the past two decades.”

Philip Pascall co-founded First Quantum Minerals in 1996 and has served as its CEO and Chairman ever since. He retires as one of the longest-serving CEOs among the world’s major mining companies. Over the course of his stewardship, the company has grown from the construction of the Bwana Mkubwa project in Zambia designed for 10,000 t/y of copper production, to become the world’s sixth largest copper producer. First Quantum has operations on five continents, employing more than 20,000 people and producing over 800,000 tonnes of copper annually.

Harding said: “On behalf of the entire company, I would like to thank Philip for his extraordinary leadership. Over the span of a quarter century as CEO, Philip has demonstrated a capacity to solve problems others could not and to bring unique solutions to complex project issues. The Board believes his ongoing involvement as Chairman will be a significant competitive advantage and form a uniquely complementary combination with Tristan’s hands-on, collaborative leadership style.”

NextOre’s magnetic resonance tech up and running at First Quantum’s Kansanshi

Australia-based NextOre is onto another ore sorting assignment with its magnetic resonance (MR) sensing technology, this time in Zambia at First Quantum Minerals’ Kansanshi copper mine.

NextOre was originally formed in 2017 as a joint venture between CSIRO, RFC Ambrian and Worley, with its MR technology representing a leap forward in mineral sensing that provides accurate, whole-of-sample grade measurements, it says.

Demonstrated at mining rates of 4,300 t/h, per conveyor belt, the technology comes with no material preparation requirement and provides grade estimates in seconds, NextOre claims. This helps deliver run of mine grade readings in seconds, providing “complete transparency” for tracking downstream processing and allowing operations to selectively reject waste material.

Having initially successfully tested its magnetic resonance analysers (MRAs) at Newcrest’s Cadia East mine in New South Wales, Australia, the company has gone onto test and trial the innovation across the Americas and Asia.

More recently, it set up camp in Africa at First Quantum Minerals’ Kansanshi copper mine where it is hoping to show off the benefits of the technology in a trial.

The MRA in question was installed in January on the sulphide circuit’s 2,800 t/h primary crushed conveyor at Kansanshi, with the installation carried out with remote assistance due to COVID-19 restrictions on site.

Anthony Mukutuma, General Manager at First Quantum’s Kansanshi Mine in the Northwestern Province of Zambia, said the operation was exploring the use of MRAs for online ore grade analysis and subsequent possible sorting to mitigate the impacts of mining a complex vein-type orebody with highly variating grades.

“The installation on the 2,800 t/h conveyor is a trial to test the efficacy of the technology and consider engineering options for physical sorting of ore prior to milling,” he told IM.

Chris Beal, NextOre CEO, echoed Mukutuma’s words on grade variation, saying daily average grades at Kansanshi were on par with what the company might see in a bulk underground mine, but when NextOre looked at each individual measurement – with each four seconds representing about 2.5 t – it was seeing some “higher grades worthy of further investigation”.

“The local geology gives it excellent characteristics for the application of very fast measurements for bulk ore sorting,” he told IM.

Mukutuma said the initial aim of the trial – to validate the accuracy and precision of the MRA scanner – was progressing to plan.

“The next phase of the project is to determine options for the MRA scanner to add value to the overall front end of processing,” he said.

Beal was keen to point out that the MRA scanner setup at Kansanshi was not that much different to the others NextOre had operating – with the analyser still measuring copper in the chalcopyrite mineral phase – but the remote installation process was very different.

“Despite being carried out remotely, this installation went smoother than even some where we had a significant on-site presence,” he said. “A great deal of that smoothness can be attributed to the high competency of the Kansanshi team. Of course, our own team, including the sensing and sorting team at CSIRO, put in a huge effort to quickly pivot from the standard installation process, and also deserve a great deal of credit.”

Beal said the Kansanshi team were supplied with all the conventional technical details one would expect – mechanical drawings, assembly drawings, comprehensive commissioning instructions and animations showing assembly.

To complement that, the NextOre team made use of both the in-built remote diagnostic systems standard in each MRA and several remote scientific instruments, plus a Trimble XR10 HoloLens “mixed-reality solution” that, according to Trimble, helps workers visualise 3D data on project sites.

“The NextOre and CSIRO teams were on-line on video calls with the Kansanshi teams each day supervising the installation, monitoring the outputs of the analyser and providing supervision in real time,” Beal said. He said the Kansanshi team had the unit installed comfortably within the planned 12-hour shutdown window.

By the second week of February the analyser had more than 90% availability, Beal said in early April.

He concluded on the Kansanshi installation: “There is no question that we will use the remote systems developed during this project in each project going ahead, but, when it is at all possible, we will always have NextOre representatives on site during the installation process. This installation went very smoothly but we cannot always count on that being the case. And there are other benefits to having someone on site that you just cannot get without being there.

“That said, in the future, we expect that a relatively higher proportion of support and supervision can be done through these remote systems. More than anything, this will allow us to more quickly respond to events on site and to keep the equipment working reliably.”

FQM awards Ravensthorpe nickel E&I package to SIMPEC

SIMPEC says it has been contracted by First Quantum Minerals (FQM) to deliver an electrical and instrumentation (E&I) package at the Ravensthorpe nickel operations’ Shoemaker-Levy project, in Western Australia.

This material, newly awarded contract is SIMPEC’s first with FQM, the company said.

The contract scope is for the E&I portion of work for Shoemaker-Levy, with the value expected to be around A$9 million ($6.8 million).

The works are planned to commence immediately and be completed by mid-2021, the WestStar Industrial subsidiary says.

With FQM restarting Ravensthorpe in early 2020, it has been expanding into a second stage nickel laterite deposit, Shoemaker-Levy, to provide the operation with a long-term life of around 30 years.

FQM’s Cobre Las Cruces to fill open-pit output void with tailings reprocessing project

First Quantum Minerals’ majority-owned Cobre Las Cruces mine looks to have pushed out production for at least another year after devising a way to reprocess tailings at the copper operation in Spain.

A method was developed to reprocess tailings from already mined material, which is expected to yield around 22,000 t of copper over the next two years, First Quantum reported.

“Significant changes will be required to ensure the mine can adapt to the new processes required, but we have no doubt everyone at Las Cruces is up to the job,” it said.

In First Quantum’s most recent September quarter results, the company said 2020 was expected to be the final full year of production for the open pit at Cobre Las Cruces.

“Following the completion of open-pit mining, copper production will continue until early 2021 with the processing of stockpiled ore,” it said in the report, noting copper production guidance for 2020 of 55,000 t.

It added that extension of the current mine life through the re-processing of high-grade tailings was being assessed.

Alongside this tailings reprocessing strategy, Cobre Las Cruces is continuing its technical and study work on the polymetallic refinery project at Cobre Las Cruces.

Environmental permits for this project – which involves switching to a polymetallurgical processing route and developing an underground mine – are expected to be received before the end of the year, with water permits due in 2021, FQM said.

MACA to help FQM with Ravensthorpe nickel mine restart

MACA says it has received a letter of award from First Quantum Minerals related to carrying out open-pit mining services at the Ravensthorpe nickel project in Western Australia.

On care and maintenance since October 1, 2017, due to the persistently low nickel price, Ravensthorpe involves open-pit mining and beneficiation of nickel laterite ore, pressure acid leaching, atmospheric leaching, counter current decantation, precipitation and filtration to produce a mixed hydroxide precipitate product, containing approximately 40% nickel and 1.4% cobalt on a dry basis.

First Quantum hinted earlier this year that a restart could be on the cards following a sustained nickel price run. Restart costs, should favourable conditions prevail, are estimated at $10 million, the company has previously said.

The final contract award with MACA is subject to finalisation of documentation with all major terms having been agreed, the ASX-listed contractor said.

Mobilisation to site is expected to commence in December with operations commencing from January.

The project will consist of open-pit mining services including drilling and blasting, and loading and hauling, and is expected to generate around A$480 million ($327 million) in revenue for MACA over the initial five-year term.

MACA said its total work in hand position now stands at A$2.5 billion and its financial year 2020 revenue is expected to be around A$770 million.

MACA Operations Director, Geoff Baker, said: “We are very pleased to have been selected preferred contractor and look forward to developing a long-term working relationship with the First Quantum team at the Ravensthorpe nickel project.”

Orica turns wireless blasting dream into a reality at Europe’s deepest mine

In Europe’s first demonstration of wireless blasting, Orica has enabled First Quantum Minerals’ (FQM) Pyhäsalmi underground mine in Finland to recover ore it previously thought inaccessible.

Orica’s WebGen™ 100, the first truly wireless rock blasting system, has been used in trials at the zinc-copper-pyrite mine since September 2018, with FQM, to date, carrying out five blasts.

Since the invention of the safety fuse by William Bickford in 1831, there has been three revolutions in blast initiation methods – electric detonators (1930s), shock tube (1980s) and electronics (~2000s). Every new initiation method development has increased the safety, precision and possibilities of initiating blasts.

The new Safety Integrity Level 3 certified WebGen system could end up being the fourth revolution in this line-up, Orica believes.

Still in its infancy with, as of August, more than 250 blasts fired using wireless initiation, the WebGen technology has already led to the development of several new mining techniques such as Temporary Rib Pillar (TRP), Temporary Uppers Retreat Pillar, Reverse Throw Retreat, Longitudinal Transverse Retreat and Pre-Loaded Retreat that would not be viable or possible without wireless blasting technology.

WebGen comprises the following components:

  • WebGen primer and accessories – including the high explosive Pentex™ W booster, i-kon™ plugin electronic detonator, the Disposable Receiver (DRX) and the encoder controller;
  • Transmission system – including transmitter, antenna and transmitter controller; and
  • Code Management Computer (CMC) – including the unique global blast and arm codes.

The system achieves wireless blasting through very low frequency magnetic induction (MI) signals communicated to the in-hole primer, with the special site-specific group ID, arm and firing codes embedded in the MI signals. The system eliminates the lead wires of conventional initiation systems, thereby also eliminating the ‘hook-up’ process at the blastholes.

The operation works as follows: The i-kon plugin detonator plugs into the DRX, energising the device and initiating a self-test. After passing the self-test, the device can be encoded with the blast code and the delay timing. The booster is attached after encoding the device. At this stage the WebGen primer is ready to be placed into the blasthole.

The transmitter controller – a magnetic induction system connected to an antenna – sends the arming signal to the transmitter. Once the arming process is successful the firing window is presented to the blaster.

The CMC is the data hub of the system and supplies the identification and firing codes as well as the mine specific codes. Orica explained: “It culminates in the ready to fire file for transmission.”

Game changer

With the elimination of lead wires, it is possible to pre-charge a full stope (eg sub-level caving mining method) and fire every ring when required without sending personnel back to the dangerous brow area to connect lead lines, Orica says. “Misfires related to damaged wires are eliminated and primers can be fired regardless of any dislocations of blasthole and/or charge.”

The Ernest Henry mine, in north-eastern Australia, engaged Orica in 2016 to perform a demonstration of sub-level caving using WebGen. The mine wanted to reduce the time spent by personnel at the brow of the cave. With the use of WebGen they were successful in pre-loading the stope production rings and eliminating the need to return to the brow for hooking up.

At Newmont Goldcorp’s Musselwhite mine, productivity and ore recovery were the main drivers for looking into wireless blasting. Together with Orica, Musselwhite developed the TRP mining method where a temporary pillar is used to withhold backfill while the second mass blast (i-kon electronic detonators) of the stope is mucked out.

Orica explained: “Once the stope is mucked out, the TRP is fired remotely and the ore can be recovered.”

With this method the mine established a 93% reduction in dilution, increase in mucking of 27% and a two-week saving in time per stope, the company said.

FQM – Pyhäsalmi

In March 2018, a team of Orica Technical Services Engineers commenced preparations and planning for the first wireless demonstration in Europe with the FQM Pyhäsalmi mine, in Finland, the deepest mine in the continent.

At the time, the mine was scheduled to close in September 2019; most of the stopes had been mined out and the remaining stopes and pillars were becoming increasingly challenging to mine. Orica said: “Pyhäsalmi had developed a system to mine the stranded pillars, but this was incurring considerable time and costs. Pyhäsalmi mine acknowledged that WebGen 100 could be a solution for the problems in retrieving remaining ore in difficult areas.”

As a first stop, the Orica team of blasting specialists had to assess if the WebGen system would successfully function in Pyhäsalmi mine. “Before firing the WebGen shot it was important to investigate if the system would work in the mine and what the maximum signal reach would be for both the quad loop and cable loop antenna,” the company said.

Signal strength testing provides positive confirmation of coded signals being received through the mine and also validates if there are any parts of the mine where the system has a reduced range.

A smaller antenna and a larger antenna were tested.

Pyhäsalmi experiences occasional sulphur dust explosions and, therefore, personnel are not allowed to be underground while blasting, Orica said. As a result, blasting takes place at the end of the shift after the shift explosives supervisor checks everyone has vacated the mine.

Initial signal testing with the smaller antenna validated the system was working with a range of at least 200 m. Further signal testing was performed using the larger antenna.

It was validated the system could send and receive signals from the production level to the furthest stope, which was 450 m away, Orica said.

After assessing the MI signal test results, it was decided it would be more convenient to use the smaller antenna.

In September 2018, the EMEA WebGen team returned to Pyhäsalmi mine for the first wireless blast in Europe. The final three rings of stope 18b10-11 on Level 1,175 were selected for the demonstration blast.

On September 4, 2018, at 22:00, the first wireless blast in Europe was fired without any issue.

Since the introduction of wireless blasting, Pyhäsalmi mine has fired a total of five blasts in challenging areas.

For one of the wireless blasts, a stope would not be accessible after the first blast, but, as the stope could be pre-loaded with wireless detonators, the mine could blast and produce 4,000 t of extra ore that otherwise would have been sterilised.

Katja Sahala, Mine Planning Engineer, FQM Pyhäsalmi mine, said she saw the WebGen wireless system as helping operations in several applications such as when ore needs to be left behind to support pillars, or where there is weak rock, or fill and selective mining is required.

She said: “In uphole charging, you need to work close or even below an open face during drilling and blasting. If it’s possible to drill and charge an entire stope before the first hole is fired, then safety will surely be improved.”

Orica said wireless blasting is a new and exciting technology that eliminates the use of cumbersome and complex wiring hook-ups while having the accuracy of an electronic detonator. It has already enabled safer work methods and mining techniques that increase recovery, productivity and efficiency, according to the company.

It concluded: “Many technical and regulatory challenges will be faced by wireless blasting, but it is a fundamental step in the automation of the explosives charging and blasting process. With the first WebGen blasts at FQM Pyhäsalmi mine, wireless blasting is no longer a dream in Europe, but a reality.”