Tag Archives: Gällivare

LKAB accelerates carbon-dioxide-free sponge iron plans

LKAB says it is boosting both the pace and the level of ambition of its plans towards transitioning to carbon-dioxide-free sponge iron following a successful exploration program.

A dramatic increase in mineral resources means that the plan for future production of sponge iron has been upped to 24.4 Mt/y by 2050. This will enable a reduction in carbon dioxide emissions among global steel industry customers corresponding to nearly all of Sweden’s current greenhouse gas emissions, LKAB says.

“The climate can’t wait and demand for the raw material for producing fossil-free steel is already upon us – before we have even reached the market,” Jan Moström, LKAB’s President and CEO, said.

In March 2022, LKAB reported increased mineral reserves and mineral resources, referencing deposits containing about 4,000 Mt, which will enable production far beyond 2060. LKAB’s known mineral reserves and resources now add up to double the amount thus far mined in the company’s 130-year history.

“We are accelerating and expanding the plans for future production of sponge iron produced with hydrogen,” Moström said.

LKAB is now moving towards a rapid industrialisation of the HYBRIT technology for transforming production in Malmberget/Gällivare, which is closely integrated with SSAB. The plan is to synchronise the transition with SSAB’s planned transition and to have switched entirely from pellet production to sponge iron amounting to some 5.4 Mt by the 2030s. This will enable emissions reductions amounting to about 9 Mt at SSAB.

Moström added: “After the most recent climate reports from the UN, the urgency of the climate issue must be obvious to everyone. We can see that this transition also makes good business sense and that it creates jobs, growth and yield on investments. By leading the way towards the green transition, we are also building Sweden’s competitive advantage internationally.

“The entire value chain must undergo a transformation, and quickly. The HYBRIT technology, which we have developed in collaboration with SSAB and Vattenfall, will be industrialised starting in Gällivare, where the first plant will be operational in 2026. The capacity increase LKAB is now planning corresponds to three more such facilities in Malmberget/Gällivare within barely a few years after commissioning of the first HYBRIT plant.”

When the transition has been completed, with increased production, by around 2050, the target is for LKAB to produce 24.4 Mt/y of sponge iron, with zero carbon dioxide emissions. By removing the oxygen from the iron ore by means of electrically-produced hydrogen gas, instead of the steel mills using fossil carbon in blast furnaces, LKAB can enable reductions in carbon dioxide emissions of between 40-50 Mt/y at steelmaking customers. That corresponds to nearly all of Sweden’s current annual greenhouse gas emissions.

A rapid transition places higher demands on fossil-free electricity and more power distribution infrastructure. LKAB’s demand, needed mainly for hydrogen gas production, is estimated at 20 TWh/y by 2030, increasing to 50 TWh/y by 2040 and finally reaching 70 TWh/y when the entire expansion has been realised by 2050.

“To make the climate transition a reality, we will need a massive expansion of power production and distribution,” Moström said. “We need to double electricity production within the next 25 years, and the iron and steel industry value chain is waiting for very other TWh of this.”

The switch from pellets to sponge iron also means that the value of the product increases significantly, according to LKAB.

Moström concluded: “In terms of today’s market prices, this expansion would triple LKAB’s revenue. By building up production of sponge iron, we are increasing the value of LKAB’s, and thereby Sweden’s, mineral reserves and resources, and creating growing export values. Above all, we are making an enormous effort for the benefit of the climate.”

HYBRIT partners produce world’s first hydrogen-reduced sponge iron

SSAB, LKAB and Vattenfall say they have now produced the world’s first hydrogen-reduced sponge iron at a pilot scale.

The technological breakthrough in the HYBRIT initiative captures around 90% of emissions in conjunction with steelmaking and is a decisive step on the road to fossil-free steel, the partners say.

The feat from the HYBRIT pilot plant in Luleå, Sweden, showed it is possible to use fossil-free hydrogen gas to reduce iron ore instead of using coal and coke to remove the oxygen. Production has been continuous and of good quality, the companies said, with around 100 t made so far.

This is the first time ever that hydrogen made with fossil-free electricity has been used in the direct reduction of iron ore at a pilot scale, according to the HYBRIT partners. The goal, in principle, is to eliminate carbon dioxide emissions from the steelmaking process by using only fossil-free feedstock and fossil-free energy in all parts of the value chain.

Hydrogen-based reduction is a critical milestone, which paves the way for future fossil-free iron and steelmaking. SSAB, LKAB and Vattenfall intend, through HYBRIT, to create the most efficient value chain from the mine to steel, with the aim of being first to market, in 2026, with fossil-free steel at an industrial scale, they say.

Last year, HYBRIT, a joint initiative of SSAB, LKAB and Vattenfall, began test operations to make hydrogen-reduced sponge iron in the pilot plant built with support from the Swedish Energy Agency. The technology is being constantly developed and the sponge iron that has been successfully made using hydrogen technology is the feedstock for the fossil-free steel of the future, they say.

Jan Moström, President and CEO at LKAB, said: “This is a major breakthrough both for us and for the entire iron and steel industry. LKAB is the future supplier of sponge iron and this is a critical step in the right direction. Progress with HYBRIT enables us to maintain the pace in our transition and, already in 2026, we will begin the switch to industrial-scale production with the first demonstration plant in Gällivare, Sweden. Once LKAB has converted its entire production to sponge iron, we will enable the transition of the steel industry and reduce global emissions by around 35 Mt a year, which corresponds to two thirds of Sweden’s entire emissions. This is the greatest action we can take together for the good of the climate.”

Martin Lindqvist, President and CEO at SSAB, added: “This technological breakthrough is a critical step on the road to fossil-free steel. The potential cannot be underestimated. It means that we can reach climate goals in Sweden and Finland and contribute to reducing emissions across Europe. At the same time, it creates new jobs and export successes. SSAB’s transition means we will reduce carbon dioxide emissions by 10% in Sweden and 7% in Finland. High-strength fossil-free steel will also allow us to help our customers to strengthen their competitiveness. As early as this year, we will deliver minor quantities of steel made using hydrogen-based reduction to customers, and in 2026 we will deliver fossil-free steel at a large scale.”

The hydrogen used in the direct reduction process is generated by electrolysis of water with fossil-free electricity, and can be used immediately or stored for later use, according to the partners. In May, HYBRIT began work on building a pilot-scale hydrogen storage facility adjacent to the direct reduction pilot plant in Luleå.

Anna Borg, President and CEO at Vattenfall, said: “Sweden’s and Vattenfall’s fossil-free electricity is a basic requirement for the low carbon footprint of hydrogen-reduced sponge iron. The breakthrough that we can announce today shows in a very real way how electrification contributes to enabling a fossil-free life within a generation.”

HYBRIT partners choose Gällivare for fossil-free sponge iron demonstration plant

SSAB, LKAB and Vattenfall say they are taking a new, decisive leap forward in their work on HYBRIT, with the trio selecting Gällivare, in northern Sweden, as the location of the first production plant for its fossil-free sponge iron exercise.

Industrialisation is intended to start with the first demonstration plant, which will be ready in 2026, for the production of 1.3 Mt of fossil-free sponge iron in Gällivare. The demonstration plant will be integrated with iron pellet making and is part of LKAB’s transition plan.

The goal is to expand sponge iron production to a full industrial scale of 2.7 Mt by 2030 to be able to supply SSAB, among others, with feedstock for fossil-free steel. The choice of Gällivare for the demo plant was based on a joint assessment of industrial synergies, where proximity to iron ore, logistics, an electricity supply and energy optimisation were important factors, the companies said.

There are many advantages to locating the new sponge iron plant in Gällivare, which is also near LKAB’s mining production and processing plants. Using iron ore pellets that are already warm in the process will save huge amounts of energy, according to the companies. On top of this, 30% of weight will be eliminated from transport since hydrogen gas will be used to remove the oxygen in the iron ore. Gällivare also offers good access to fossil-free electricity from Vattenfall.

Martin Lindqvist, President and CEO at SSAB (centre), said: “We are world leaders in the work to transform the steel industry and are now stepping up the pace. We are doing this for the climate, customers, competitiveness and for employment. That we are now raising ambitions for a completely fossil-free value chain is unique and a message of strength from SSAB and our HYBRIT partners. We are seeing a clear increase in demand for fossil-free steel and it is right to speed up our ground-breaking cooperation.”

Jan Moström, President and CEO at LKAB (left), said the companies are leading the transformation of the iron and steel industry.

“The whole process starts with top quality iron ore in the mine and our transition plan gives strong economies of scale that pave the way for the competitive production of fossil-free steel by our customers,” he said. “This is the greatest thing we can do together for the climate. Once we are ready, we will reduce the global emissions of our customers by 35 Mt a year, which is equivalent to triple the effect of parking all passenger cars in Sweden for good.”

At the same time as announcing the Gällivare demo plant, SSAB and LKAB have agreed to deepen their partnership to create the “most effective fossil-free steel value chain from mine to steel, to customer”, they said.

“We will support and enable each other’s transformation, with Vattenfall an enabler of the huge need for electricity and hydrogen gas,” they said. “On the back of an acceleration of HYBRIT, together with LKAB’s strategy and deeper partnership, SSAB will now explore the prerequisites to convert to fossil-free steel production in Luleå faster than planned.”

The plan to convert its Oxelösund steel works in 2025 remains unchanged, as does its goal to be the first to market, in 2026, with fossil-free steel, SSAB clarified.

Anna Borg (right), President and CEO at Vattenfall, added: “Sweden and HYBRIT have a world-leading position in making fossil-free iron- and steelmaking a reality and the initiative will now be further scaled up. That fossil-free electricity and ground-breaking processes will in principle help to eliminate climate-affecting emissions completely from iron- and steelmaking is a flagship example of Vattenfall’s strategy to enable a fossil-free life within a generation. It is now extra important that the permit processes can deliver at the same pace as fossil-free steelmaking.”

Hybrit Development AB, which is owned by SSAB, LKAB and Vattenfall, is developing the technology to make steel using hydrogen gas instead of coal, which will minimise climate harmful carbon dioxide emissions from production. The HYBRIT pilot plant will be able to make fossil-free sponge iron to make fossil-free steel for prototypes to customers already in 2021.

The partners claim the initiative has the potential to reduce carbon dioxide emissions by 10% in Sweden and 7% in Finland, as well as contribute to cutting steel industry emissions in Europe and globally.