Tag Archives: greenhouse gas emissions

Komatsu teams with Rio, BHP, Codelco and Boliden on zero-emission mining solutions

Working together to rapidly innovate in support of carbon reduction targets, Komatsu has teamed up with several of its customers to form the Komatsu Greenhouse Gas (GHG) Alliance.

The founding members of the alliance are Rio Tinto, BHP, Codelco and Boliden.

Through the alliance framework, Komatsu’s GHG partners will work directly with Komatsu to actively collaborate on product planning, development, testing and deployment of the next generation of zero-emission mining equipment and infrastructure, the OEM said. The alliance’s initial target is advancing Komatsu’s power-agnostic truck concept for a haulage vehicle that can run on a variety of power sources including diesel-electric, electric, trolley (wired), battery power and even hydrogen fuel cells.

“We are honoured that our customers, several of the largest mining companies in the world, have agreed to participate in the Komatsu GHG Alliance and work in partnership with us to develop sustainable solutions for mining,” Masayuki Moriyama, President of Komatsu’s Mining Business Division, said. “We look forward to close collaboration with these industry leaders to accelerate development and deployment of the next level of equipment designed to reduce greenhouse gases from mining operations and ultimately achieve the goal of zero-emission mining.”

The formation of the alliance brings together mining leaders willing to share time, resources and information to deliver zero-emissions equipment solutions, Komatsu said. The company intends to expand the alliance to additional mining companies to enhance industry-wide collaboration on solutions to decarbonisation.

In a separate release, Rio Tinto said it will conduct a pre-production trial of the new equipment at a site and has the option to purchase some of the first trucks from Komatsu once they are commercially viable.

Alf Barrios, Rio Tinto’s Chief Commercial Officer, said: “Rio Tinto and Komatsu have a shared history of partnership on innovation going back to when we built the world’s largest Komatsu autonomous haulage fleet in 2008.

“Our support of a trial, and the option to buy some of the first trucks from Komatsu, underscores our shared commitment to actively collaborate on product planning, development, testing and deployment of the next generation of zero-emission mining equipment and infrastructure as we look to decarbonise our business.”

As a company, Komatsu, meanwhile, says it is committed to minimising environmental impact through its business, targeting a 50% reduction in CO2 emissions from use of its products and production of its equipment by 2030 (compared with 2010 levels) and a challenge target of achieving carbon neutrality by 2050.

Komatsu has worked to reduce greenhouse gas emissions for customers through product development for decades in many areas including electric diesel dump trucks, electric power shovels, regenerative energy storage capabilities and fuel saver programs, it said.

The company’s initial concept for a haulage vehicle that can run on a variety of power sources, part of the power-agnostic development, is set to make its official debut at MINExpo 2021 on September 13-15 in Las Vegas, USA.

OceanaGold and Beca come up with decarbonisation pathway for Macraes

OceanaGold has enlisted the help of independent advisory, design and engineering consultancy Beca to reduce emissions at its Macraes gold mine in Central Otago, New Zealand.

Beca developed an Energy Transition Acceleration (ETA) study to provides a pathway to a greener future at the mine, which produced over 172,000 oz/y of gold and employs more than 600 people. Macraes is New Zealand’s largest mine.

“As participants in the New Zealand government’s ETA program, OceanaGold are focused on reducing their greenhouse gas (GHG) emissions at their Macraes site to not only improve the sustainability of their product, but also reduce their energy costs,” Beca said.

“That’s where Beca entered the picture. As program partners with the ETA, our industrial sustainability and engineering teams worked closely with OceanaGold management to develop an Energy Transition Accelerator study that identified a practical emissions reduction pathway for their business.”

The Macraes operation consists of a large-scale surface mine, an underground mine, and an adjacent process plant inclusive of an autoclave for pressure oxidation of the ore. Its annualised gold production is split approximately 75% to open-pit production and about 25% underground production.

Key opportunities for reducing the GHG emissions include harnessing waste heat recovery; fuel switching; solar lighting towers; electric elution hot water heating; battery-powered electric haulage trucks; and electrification of excavators.

“Taken together, these practical abatement measures can reduce emissions from the Macraes gold mine by a substantial 37%, whilst additional measures – such as the use of renewable energy sources on site – could increase this figure to 59%,” Beca said.

With the study now complete, Beca says it is ready to support OceanaGold in implementing the identified recommendations over coming years – with some of these options also applicable to its Waihi mine on the North Island of New Zealand.

BluVein charges into mine electrification space

BluVein, armed with its “dynamic charging” philosophy, is pitching a different option to miners looking to electrify their underground operations over the long term.

While battery-electric machines such as light utility vehicles, mobile mining support equipment, and low-to-medium tonnage LHDs and trucks have spread throughout major mining hubs like North America, Europe and Australia, the next step is electrifying the machines with the heaviest duties in the underground mining space.

If the sector settles for battery-electric options in this weight class for uphill haulage scenarios, they will need to leverage bigger batteries, more battery swapping or some additional charging infrastructure to power vehicles up ramp.

Two of the leading mining OEMs in the electrification space are considering all the above.

Sandvik, through its wholly owned Artisan Vehicles subsidiary, is developing a 65 t payload battery-electric haul truck with a bigger battery than its 50-t vehicle (the Z50) that will see quick battery swapping employed on uphill hauls, while Epiroc is weighing the potential of fully-electric operation with a battery and trolley combination in its larger payload class trucks.

BluVein is intent on laying the groundwork for multiple OEMs and mining companies to play in this space without the need to employ battery swapping or acquire larger, heavier batteries customised to cope with the current requirements placed on the heaviest diesel-powered machinery operating in the underground mining sector.

It is doing this through adapting charging technology originally developed by Sweden-based EVIAS for electrified public highways. The application of this technology in mining could see operations employ smaller, lighter battery-electric vehicles that are connected to the mine site grid via its Rail™ and Hammer™ technology and a sophisticated power distribution unit to effectively power electric motors and charge a vehicle’s on-board batteries.

This flexible technology is set for a trial later this year, with the company – a joint venture between EVIAS and Australia-based Olitek – already busy behind the scenes enlisting a number of funding partners to push forward with a collaborative pilot aimed at demonstrating the next generation of trolley assist technology.

With this aim in mind and knowledge of previous trolley projects at underground mines, IM put some questions to BluVein Founder, James Oliver.

IM: What input does Olitek provide within BluVein? Do they produce customised prototype battery-electric machines?

JO: BluVein is a new company formed through a partnership between EVIAS and Olitek. While we are a new venture, unlike traditional start-ups, BluVein is backed by two highly experienced long-standing companies and is seeking to enable the fully-electric mine of today.

The biggest need for electric mining vehicles is in heavy-duty load and haul applications on inclined roads. In this instance, batteries on their own are not up to the task – not even close. Dynamic charging is the game-changing technology that will enable fully-electric heavy-duty load and haul on inclined roads.

In the partnership, Olitek provides the mobile vehicle, robotics, electrical and mining environment expertise to enable BluVein to operate safely and reliably in a mining environment. BluVein is currently working with a number of mining vehicle OEMs to integrate the BluVein system to suit their on-board battery and motor architecture, enabling safe dynamic charging from a standardised slotted rail system.

The joint venture does not produce customised prototype battery-electric vehicles or battery machines, and we are vehicle OEM-agnostic; we are open to working with any battery-electric vehicle manufacturer enabling standardised dynamic charging.

IM: What companies are involved in the collaboration mentioned? What is the aim of this collaboration (timelines, goals, etc)?

JO: Currently we are not able to disclose which mining companies and vehicle OEMs we are working with – it will be revealed in the not-too-distant future. They are, however, a selection of very well-known major companies from Sweden, Canada and Australia. We are open to other like-minded, early adopters to join the BluVein collaboration.

Our aim is to commence building our industry-backed technology demonstration pilot site in Brisbane, Australia, by late 2021 in a simulated underground environment. This will involve a section of BluVein rail and at least one electric vehicle fitted with the BluVein hammer system to demonstrate dynamic charging whilst hauling loaded up an incline.

IM: What are your overhead systems (BluVein Rail) providing that your typical underground trolley systems are not providing? How does the infrastructure required compare with, say, what Vale has in place at Creighton and Coleman in Sudbury for its Kiruna trucks?

JO: Existing trolley assist systems that utilise exposed high voltage conductors cannot be used in many mining jurisdictions globally due to safety concerns and an inability to comply with mining regulations. This is particularly the case in underground mines where clearance above mobile fleets is limited. The BluVein rail system is unique as all high voltage conductors are safely housed within ingress protection (IP) rated slots. This effectively mitigates against risks of accidental contact by mining personnel or the vehicles.

The safe and standardised systems allow for the charging of a vehicle’s batteries whilst simultaneously powering the electric-drive motors. This gives a battery-electric vehicle almost unlimited range and eliminates the requirement for battery swapping, downtime and charge bay infrastructure requirements.

Volvo FMX Electric with BluVein

And BluVein Rail does not need to be installed in all parts of the mine – only in the heavy-duty cycle zones such as mine declines and pit ramps. When tramming/hauling on flat gradients, mining vehicles operate on their own internal batteries. This dramatically reduces the system installation complexity and installation cost. Where the BluVein Rail terminates, the vehicle automatically disconnects and reverts to its on-board batteries for power, without stopping.

Ease of maintenance is one of our focus points for BluVein. The BluVein system is developed to handle typical mining drive terrain conditions so no special maintenance is required to cater for conductor contact relative to the vehicle. Our BluVein Hammer, an all-terrain trolley, takes care of this. This provides the connection between the mobile machinery and the BluVein slotted rail. As the vehicle moves through an inclined underground tunnel or along a pit ramp, the Hammer maintains the electrical connection even over rough road conditions. Operator assist controls, such as smart auto connect and disconnect functionality, are also incorporated.

BluVein is the ‘next generation’ of trolley assist technology with all the benefits and none of the negatives of the old systems.

IM: How long and steep an uphill climb is required, on average, to make the business case work in the favour of BluVein technology over your typical battery-only system? When does the TCO equation tip in favour of your solutions over other trolley systems on the market?

JO: Typical battery systems are super high cost when you consider the full impact of charge bay infrastructure, numerous large operating batteries per vehicle and rapid battery life decay. BluVein, however, has a relatively low capital cost in comparison as it enables smaller, lighter and lower power on-board batteries to be used that never require swapping or static charging.

Therefore, from day one, the TCO for BluVein will likely be favourable compared to typical battery-only systems, regardless of haul length.

IM: Are BluVein Hammer or BluVein Rail already installed at mine sites around the world? What models of machines have they been integrated on?

JO: The underlying technology for the BluVein Rail and Hammer has been developed over the past 11 years with EVIAS for electrified highways. BluVein is the adaptation of this technology specific to the harsh conditions found within mining.

The BluVein system has been designed to suit nearly all current mining battery-electric vehicles so that a single BluVein Rail installed in a mine can power the entire fleet, even if that fleet is comprised of mixed OEM machinery.

A working EVIAS system has been installed in an open highway setting in Sweden, but no mining applications exist at this point. As mentioned, BluVein will have a pilot site underway by the end of 2021.

IM: Given a Volvo TA15 all-electric hauler is pictured on your website, are you also working with open-pit miners on this collaboration?

JO: BluVein is not just suited to underground applications, however, initially that is the focus given the urgency around eradicating diesel emissions and particulate matter and its carcinogenic properties.

BluVein pilot site concept – simulated underground

BluVein has strong application in open-pit mining and in quarry environments to reduce greenhouse gas emissions and improve productivity and costs. The technology can leverage all the same advantages seen underground in open-pit applications. The bonus with underground is we have free infrastructure to hang the rail from.

A number of our partner mining companies are assessing the BluVein system for both surface and underground deployments.

Suncor backs Svante and its carbon dioxide capture technology

Suncor has backed the decarbonisation and hydrogen production ambitions of carbon capture technology company Svante, joining a number of firms in its latest equity raising.

Svante is looking to accelerate the commercialisation of its novel second generation CO2 capture technology, aiming to decarbonise industrial emissions and hydrogen production in North America. Its technology, Svante claims, captures carbon dioxide from flue gas, concentrates it, then releases it for safe storage or industrial use.

Combined, Suncor and a number of family office investors have invested $25 million of equity financing, bringing the total proceeds raised under Svante’s Series D financing to $100 million, completing what Suncor says is the largest single private investment into point source carbon capture technology globally to date.

Svante has now attracted more than $175 million in total funding since it was founded in 2007 to develop and commercialise its breakthrough solid sorbent technology at half the capital cost of traditional engineered solutions.

Claude Letourneau, President & CEO of Svante Inc, said: “Svante has generated a pipeline of potential new project opportunities capturing over 40 Mt of CO2/y before 2030 from natural gas industrial boilers, cement and lime, and blue hydrogen industrial facilities, mainly in North America and spurred by both US and Canada federal CO2 tax credits and prices on CO2 emissions.”

According to Mark Little, President & CEO of Suncor, “carbon capture is a strategic technology area for Suncor to reduce greenhouse gas emissions in our base business and produce blue hydrogen as an energy product. An investment in Svante is expected to support the acceleration of commercial-scale deployment of a technology that has the potential to dramatically reduce the cost associated with carbon capture. We are excited to become both an investor in and a collaborative partner with the company.”

Letourneau added on Suncor’s investment: “We are pleased to partner with a leading Canadian player in the energy industry, alongside existing investor Cenovus, and to benefit not only from their financial support but also their commitment to deliver low-carbon fuels and blue hydrogen to transform the energy system.”

Svante says its approach is tailored specifically to the challenges of separating CO₂ from nitrogen contained in diluted flue gas generated by industrial plants such as cement, steel, aluminium, fertiliser and hydrogen, which is typically emitted in large volumes, at low pressures, and dilute concentrations.

It uses tailor-made nano-materials (solid adsorbents) with very high storage capacity for carbon dioxide. It has engineered these adsorbents to catch and release CO₂ in less than 60 seconds, compared with hours for other technologies.

The company’s carbon capture technology consists of a patented architecture of structured adsorbent laminate (spaced sheets), proprietary process cycle design, and a rotary mechanical contactor to capture, release and regenerate the adsorbent in a single unit.

In January, Lafarge Canada, Svante and Total announced they had reached a major milestone at its Project CO2MENT, a first-of-its kind partnership to capture industrial levels of CO2 emissions from a cement plant. The multi-phase project celebrated the completion of Phase II construction to have the technology to capture and filter the CO2 from the flue gas. This was a crucial component to achieving the next stage of capturing CO2 flow at the Lafarge Richmond cement facility in British Columbia, Canada.

Nickel 28 claims industry ‘first’ carbon neutral status

Nickel 28 Capital Corp has become what it believes is the first carbon neutral refined nickel-cobalt producer in the world through a transaction involving the purchase of 52,500 carbon offsets on the Verra Registry.

The carbon offsets will, it says, fully offset Nickel 28’s anticipated 2021 attributable greenhouse gas (GHG) emissions from the Ramu integrated nickel-cobalt mine and refinery in Papua New Guinea (pictured), an asset it owns 8.56% of.

Anthony Milewski, Chairman of Nickel 28, said: “We are incredibly excited to be one of the first, if not the first, producers of refined nickel and cobalt in the world to fully offset its carbon footprint.

“We feel strongly that each of us has an obligation to do our part personally and professionally to help stave off the negative impacts of climate change. As the world pivots to electric vehicles and other means of decarbonisation, it is imperative that the critical basic materials fuelling the transition have the minimum possible impact on the environment.”

On February 9, Nickel 28 announced it had completed an independent analysis on GHG intensity for the Ramu nickel-cobalt operation, confirming the operation is one of the lower GHG emitters in the nickel industry. Ramu’s average GHG intensity has been calculated at 15.6 t of carbon dioxide equivalent per tonne of nickel (15.6 tCO2e/t Ni) in mixed hydroxide product. This compared favourably with a nickel industry average GHG intensity of 36.6 tCO2e/t Ni as calculated by Wood Mackenzie, Nickel 28 said.

The company says it will continue to introduce greater environmental, social and governance transparency with respect to its assets in response to investor and industry trends.

“In addition to GHG emission reporting, Nickel 28 will be providing further clarity with respect to other key measures such as health and safety statistics, community investment, energy and water usage, rehabilitation, and land reclamation,” it said.

Nickel 28 currently holds an 8.56% joint-venture interest in the Ramu operation, with Ramu operated by the Metallurgical Corporation of China, which, along with its partners, owns an 85% interest in Ramu.

Ramu produced 33,659 t of contained nickel in mixed hydroxide product in 2020, compared with 32,722 t in 2019.

BHP signs third low-carbon steelmaking partnership

BHP has signed a memorandum of understanding (MoU) with China’s HBIS Group Co Ltd, one of the world’s largest steelmakers and a major customer of BHP’s iron ore, with the intention of investing up to $15 million over three years to jointly study and explore greenhouse gas emission reduction technologies and pathways.

Under the partnership, BHP and HBIS Group intend to collaborate on three priority areas: hydrogen-based direct reduction technology, the recycling and reuse of steelmaking slag, and the role of iron ore lump use to help reduce emissions from ironmaking and steelmaking.

The partnership aims to help both companies progress toward their climate change goals and support the steel industry’s role in helping to achieve China’s ambitions to be carbon neutral by 2060.

BHP’s Chief Commercial Officer, Vandita Pant, said: “We view decarbonisation of the steel industry as a complex puzzle that requires multiple technological solutions across the value chain over different time horizons. By forming this third low-carbon steelmaking partnership with HBIS Group, we are focusing on additional components, such as the role our products play in hydrogen-based steel production, that complement our other partnerships and support for endeavours in emissions reduction and capture from the traditional blast furnace route.”

In February, the mining major signed a similar MoU with leading Japanese steel producer, JFE Steel, while, in November 2020, BHP and China Baowu signed a pact that could see up to $35 million invested in tackling greenhouse gas emission reductions in the global steel industry.

BHP’s investment would be drawn from its $400 million Climate Investment Program, established in 2019 to support projects, partnerships, research and development to help reduce Scope 1, 2 and 3 emissions.

BHP Chief Executive Officer, Mike Henry, said: “BHP has a long and trusted relationship with HBIS Group, and we are pleased to establish this strategic partnership to explore new ways to reduce emissions from steelmaking. Global decarbonisation will require collaboration and collective effort, and our work with partners such as HBIS Group will build on our own actions and help reduce emissions right through the value chain.”

Chairman of the World Steel Association, Party Secretary and Chairman of HBIS Group, Yu Yong, said: “The signing of the MoU fully demonstrates the two companies’ commitment to creating a green and low-carbon future across the value chain and a shared sense of responsibility to address climate change together, with a common vision to ‘contributing to a community of a shared future for mankind’. This partnership ushers in a new chapter for the two companies to deepen our strategic cooperation and to achieve collaborative development.”

BHP has also been active in other areas to reduce emissions, including awarding the world’s first LNG-fuelled Newcastlemax bulk carrier tender and the first LNG supply agreement for those vessels, and renewable energy supply contracts for BHP’s Queensland coal mines and Nickel West operations.

Aggreko to energise mine power space with investment proposition

Mobile power provider Aggreko says it is making the transition from being a pure power provider to a long-term mining project investor that is helping miners navigate the energy transition.

Aggreko has built an almost 60-year-long reputation for powering many sectors around the globe. It has also supplied power and underground cooling to the mining sector for more than 35 years and has evolved into life-of-mine contracts and renewables.

In its latest report – which details its future energy transition – Aggreko cites mining as a major growth sector. Aggreko Australia Pacific Managing Director, George Whyte, stated that Aggreko’s global team’s unique offering is with build-own-operate investments across all continents.

As well as continuing to invest upward of £250 million ($347 million) annually in technology and innovation, the company says it is ready to further boost its investments in the natural resources industry.

Whyte said: “Investor partnerships can support the rapid changes in technology and emissions compliance that our mining customers are facing. Investing millions of dollars in capital for a mine’s power plant is a risk for any company, and, as a partner, Aggreko takes on this risk instead of the mining company. It is a smart way for miners to do business in the post-COVID and renewables era.”

Aggreko’s Global Head of Mining, Rod Saffy, said miners struggling to get funding for capital expenditure projects were looking to outsource, and there was a trend toward creating partnerships with providers.

“Partnerships provide more value beyond de-risking project finances,” Saffy said. “There are technology and emissions risks, so by partnering with us, for example, we aren’t just supplying equipment and labour, we share in decision making and project milestones, we invest and update technology on-site and navigate social and environmental impacts together.”
Saffy said companies looking to build power stations for the first time particularly benefited from supportive partnerships with Aggreko.

“Power stations are our core business, and they have become much more complex on mine sites than they have been in the past,” he said. “It is challenging to get funding to build power stations, and miners are needing support to integrate renewables into their plans immediately or in the future, or needing solutions designed from scratch.

“Partnering with us is a sustainable and beneficial business solution. Miners are wanting hybrid power stations that might utilise a mix of energy sources such as diesel, gas, solar or battery, for example. They also want that power to be scaled up or down and upgraded as their needs change and new technology comes online.”

Saffy said mines throughout the world were becoming less dependent on mass-scale thermal plants to deliver baseload power through national grids.

“With the cost of renewable power generation falling, there is also growth in localised microgrids, which means less dependence or complete independence from the grid,” he said. “Miners in Australia, Africa and South America, where there is less infrastructure in remote locations, are finding it particularly helpful to partner with us from the start of a major project.”

One such example is the Gold Fields Salares Norte Mine in northern Chile where Aggreko has become a major investor, and partner for the mining project for at least 10 years. The mine is located 190 km from the nearest town and is 4,500 m above sea level, and Aggreko is creating an off-grid hybrid power solution, comprising of diesel and solar for the harsh environmental conditions. Aggreko estimates the mine will experience $7.4 million in cost energy savings across the 10 years.

Saffy said the benefits for Aggreko in partnering and investing with miners from the beginning of their project to the end of the life of mine was beneficial for both parties.

“As a partner, Aggreko de-risks the threat of future innovation and technology for miners,” he said. “Our build, own, operate and maintain model frees up working capital without increasing the debt ratio for mining projects. Modular equipment also gives miners the ability to leverage innovation at low risk and not be concerned about having the latest equipment.

“We benefit too, by showcasing our expertise and innovations throughout a project’s lifecycle and support mining companies to reduce emissions and increase their operational efficiencies.”

Late last year, Aggreko committed to achieving net zero emissions by 2050.

Newcrest shores up wind energy input at Cadia mine with Tilt Renewables PPA

Newcrest Mining has entered into a 15-year renewable Power Purchase Agreement (PPA) with Tilt Renewables Ltd to secure a significant part of the future projected energy requirements of its Cadia copper-gold mine in New South Wales, Australia.

The PPA, together with the forecast decarbonisation of NSW electricity generation, is expected to deliver a circa-20% reduction in Newcrest’s greenhouse gas emissions and is a significant step towards achieving Newcrest’s target of a 30% reduction by 2030, the miner said.

Tilt Renewables is the owner and developer of the Rye Park Wind Farm, located north of Yass and east of Boorowa in New South Wales. From January 2024, when commercial operations are targeted to commence, Newcrest will contract for around 55% of Rye Park’s planned circa-400 MW output, which is equivalent to more than 40% of Cadia’s projected energy demand from 2024.

Rye Park Wind Farm, which comes with a capital expenditure bill of A$700 million ($530 million), will become the largest wind farm directly enabled by a corporate PPA in Australia, according to Newcrest, and the project is now expected to move from the development stage into financing and construction.

The PPA is conditional on Tilt Renewables achieving financial close for the project and is a contract for difference requiring no upfront capital investment by the miner. “The PPA will act as a partial hedge against future electricity price increases and will also provide Newcrest with access to large-scale generation certificates which it intends to surrender to achieve a reduction in greenhouse gas emissions,” the company explained.

Newcrest Managing Director and Chief Executive Officer, Sandeep Biswas, said: “This new contract secures renewable energy for our Cadia operations, reduces carbon emissions and helps us maintain competitive energy costs.

“This is a critical step in our transition to sustainable energy use at our operations. As part of our Climate Change Policy, released last June, we have committed to a significant reduction in emissions intensity, and this agreement is a major step towards delivering on that objective.”

He concluded: “We continue to explore ways to reduce Cadia’s emissions intensity and our long-term aim is to virtually eliminate Cadia’s energy-related greenhouse gas emissions. In addition, we continue to pursue emissions-intensity reduction initiatives at our other operating sites.”

OceanaGold to set GHG emission targets on its way to ‘net zero’ goal

OceanaGold has become the latest miner to make a climate change pledge, releasing a position statement on the subject that includes an emissions reduction goal to achieve net zero emissions from its operations by 2050.

Included within this position statement is a plan to decarbonise its electrical energy supply and mobile equipment fuel.

The goal is core to OceanaGold’s environmental management strategy to mitigate the risks associated with climate change, establish measures and targets to improve the efficiency of its energy use and to minimise its greenhouse gas (GHG) emission intensity, the company said.

Michael Holmes, President and CEO of OceanaGold said: “OceanaGold has been strongly committed to responsible mining for 30 years, and, with current emissions lower than global industry average, we are already on the journey to reduce our carbon footprint.

“OceanaGold fully supports the Paris Agreement’s goal of limiting the increase in global average temperature to well below 2°C above pre-industrial levels. In line with this objective, we are setting a goal to achieve net zero GHG emissions from our operations by 2050, and we will establish milestone intensity targets (GHG emissions per ounce of gold produced) by 2022 to support this goal.”

Delivery of net zero carbon emissions production will rely on step changes from new and emerging technologies to decarbonise OceanaGold’s electricity supplies and mobile equipment use and incrementally improving energy use, efficiency and reducing energy consumption, the company said.

Since 2018, OceanaGold has been implementing a company-wide program of automation, digital and process transformation called ADaPT. This is helping define the company’s journey to operate the mines of the future, it said.

“Digital transformation presents an industry-wide opportunity to enhance performance and reduce impact,” Holmes said. “Successful implementation of the rapid advances in technology, innovation, automation, digitisation and electrification are central to achieving OceanaGold’s commitment to reduce our environmental impact.”

OceanaGold has established a roadmap of strategic actions to help reduce its carbon footprint and improve energy management, including:

  • Setting the goal to achieve net zero GHG emissions by 2050;
  • Establishing milestone interim emission targets by the end of 2021, linked to employment performance incentives;
  • Establishing a climate change Technical Coordinating Committee to identify opportunities to reduce GHG emission intensity and identify risks, opportunities, priorities and costs across OceanaGold; and
  • Undertaking climate change management and reporting to meet the requirements of the Task Force on Climate-related Financial Disclosures (TCFD).

Targets will be achieved through the implementation of four key strategic areas: improved energy efficiency and energy reduction; decarbonisation of electrical energy supply; decarbonisation of mobile equipment fuel; and carbon sequestration, the company said

BHP and China Baowu take on steel industry GHG emission reduction challenge

BHP has signed a memorandum of understanding (MoU) with leading steel producer, China Baowu, with the intention, it says, to invest up to $35 million and share technical knowledge to help address the challenge of reducing greenhouse gas emissions facing the global steel industry.

The five-year partnership will focus on the development of low carbon technologies and pathways capable of emission intensity reduction in integrated steelmaking, according to BHP. Under the MoU, the deployment of carbon capture, utilisation and storage in the steel sector will also be investigated at one of China Baowu’s production bases.

BHP’s investment will be funded under the $400 million Climate Investment Program, set up last year to coordinate and prioritise projects, partnerships, R&D and venture investments to reduce Scope 1, 2 and 3 emissions, offsets and support development of technologies with the highest potential to impact change.

BHP Chief Executive Officer, Mike Henry (pictured left), said the companies would collaborate on technical solutions to use low carbon fuel sources such as hydrogen injection in the blast furnace, and explore other low emission options in support of China Baowu and the steel industry’s low carbon transformation and green development goals.

“This MoU further strengthens our longstanding relationship with China Baowu and reflects our joint determination and commitment to help reduce emissions in line with the Paris Agreement goals,” Henry said.

“BHP will invest in supporting the development of low emissions technologies, promote product stewardship and partner with others to enhance the global policy and market response to climate change. Our investments are focused on actions that can create real change in emissions.”

In September, BHP awarded a tender for world’s first LNG-fuelled Newcastlemax bulk carrier to carry iron ore between Western Australia and China, which will reduce emissions by more than 30% per voyage.

In October 2019, China Baowu, meanwhile, announced the establishment of a Low Carbon Metallurgy Innovation Centre and plans to establish a Global Low Carbon Metallurgy Innovation Alliance.

China Baowu Chairman, Chen Derong, said the MoU with BHP will further enhance and broaden the existing strategic partnership between the companies, and establish a model of joint industrial efforts to promote technological innovation and a sustainable transition to a lower carbon world.

“At the UN General Assembly, President Xi Jinping delivered an important speech that outlined China’s low carbon transformation and development,” Chen Derong said. “Low carbon transition and green development represent a major disruption to the traditional steelmaking value chain.

“As a leading company in the sector, China Baowu will take an active role in implementing low carbon technologies, working together with upstream and downstream partners.

“The global steel industry needs an open platform to jointly explore low carbon technology and roadmaps, as well as showcase to the world the efforts to reshape the steelmaking value chain.”

Consistent with the ambitions of China Baowu and BHP to drive efficiency and address emissions across the global steel industry, both companies will work together to establish a China Baowu-BHP Low Carbon Metallurgy Knowledge Sharing Center, to link complementary research and share low carbon and green development knowledge with domestic and international steel industry stakeholders, the two companies said.