Tag Archives: Hemerdon

Tungsten West cuts CAPEX with new Hemerdon feasibility study plan

An updated feasibility study on Tungsten West’s Hemerdon project in Devon, England, has brought with it a processing re-optimisation program that includes a complete redesign of the front-end crushing circuit at the mine, a process that, it says, will considerably reduce the capital expenditure associated with this development.

The new study outlined average annual production of 2,900 t of WO3 in concentrate and 310 t of tin in concentrate over a life of mine of 27 years, along with an average steady-state mining rate of 3.5 Mt/y.

The changes to the existing process flowsheet to be implemented at Hemerdon can be categorised into three areas, namely:

  • Front end upgrades – new crushing, screening and ore sorting circuit required for Phase 1 (average of 2.4 Mt/y of granite ore, years 1-2);
  • Existing minerals processing facility modifications – upgrades to existing plant to accommodate production requirements for Phase 1; and
  • Phase 2 (3.5 Mt/y of granite ore, year 3 onwards) crushing and process plant expansion – future upgrades to both crushing and processing plants required for increased production rates, envisaged from year three onwards.

The re-engineering has mainly reduced capital and operating expenses around reduced ore handling costs by the introduction of direct tipping at a newly sited run of mine pad, incorporating the introduction of new semi-mobile primary jaw and secondary cone crushers, new operating parameters for the ore sorting circuit, and, to a lesser extent, changes to the existing dense media separation and fine gravity dressing circuits.

The revised front-end design also includes a significant tactical advantage through the introduction of a secondary crushed ore stockpile ahead of the ore sorters, Tungsten West said. This provides up to circa-40 hours of redundancy capacity to the crushing circuit, thereby de-coupling the front end crushing circuit from the minerals processing facility (MPF) – minimising downtime and maximising availability of the concentrator circuit.

Tungsten West has maintained the ethos of the original feasibility study in continuing to engineer-out as many operational, mechanical, electrical or ESG issues associated with the previous operation as possible and to ensure MPF availability and operability remains a priority, it said.

Back in July, Tungsten West concluded a re-evaluation of the options for bringing the Hemerdon mine back into production, announcing a new development plan that would re-optimise the March 2021 Bankable Feasibility Study. The plan was developed in response to global crises in power and diesel prices and the general inflationary environment for construction materials faced by the company.

The new plan has resulted in a remaining capital expenditure, including EPCM fees, of £31.1 million ($38 million) as of October 1.

Mark Thompson, Executive Vice Chairman of Tungsten West, said: “The feasibility study provides solutions to the energy price challenges and will enable increased operating efficiencies at the project. Key highlights from this study include a revised ore delivery and waste mining strategy, a split-phase approach to operational ramp-up to the full design specification, a new primary and secondary crushing method and location, a re-optimisation of the operating strategy for the X-ray Transmission ore sorters, re-design and re-engineering of the feed preparation, ore sorter buildings and structures, and a re-evaluation of the operation of unit processes and expected recoveries.

“We are build-ready at Hemerdon and we look forward to continuing to work with our partners and stakeholders to bring Hemerdon back into production in the fourth (December) quarter of 2023.”

EPC-UK’s rock-on-ground services team heading to Hemerdon tungsten-tin project

EPC-UK says its full rock-on-ground services will soon begin work at the Hemerdon tungsten-tin deposit in Devon, England, as part of a new contract it has secured.

The company’s work will begin in 2023 and will enable operator, Tungsten West Ltd, to benefit from EPC-UK’s skilled level of drilling and blasting expertise as it sustainably extracts specific critical minerals, it says.

The reopened Hemerdon mine comprises the world’s third largest tungsten mineral resource, with a recently-released mining plan envisaging restarting production during the first half of next year.

In terms of mining, Hemerdon will aim to process 2.1 Mt of ore in year one, 2.6 Mt in year two, before ramping up to steady-state production of 3.5 Mt throughput in year three. This targets WO3 in concentrate production of 2,200 t, 3,000 t, 3,900 t, and tin in concentrate production of 320 t, 430 t and 600 t in years 1, 2, and 3 respectively.

In advance of EPC-UK’s rock-on-ground service commencement on site, it has agreed a program of early investment in the Tungsten West project, which has allowed us to fully understand the operation’s requirements and meet the project’s needs, including, among other things, the use of the latest equipment.

This will see the company deliver new Epiroc drilling rigs fitted with autosampler capabilities for drill returns.

Explosive supply to site will also benefit from EPC-UK’s latest smart truck technology supported by the full Vertex software package, which can incorporate drone gathered data and GPS capabilities to refine and improve blast performance, assess against incremental changes in design and subsequently optimise results for customers, the company says.

In terms of digital services, EPC-UK plans to use its digital techniques and engineering expertise, together with subsequent blasting operations, to enable the most efficient ore extraction to realise the most value possible, it said.

Ben Coppock, General Manager Blasting and Explosives at EPC-UK, explained: “We’re keenly anticipating our delivery start date at Hemerdon and look forward to realising results from our joint agenda with customer, Tungsten West. Our business ethos, commitment to safety and levels of expertise are aligned, and we will work successfully and sustainably to meet our mutual greener goals.”

James McFarlane, Managing Director of Tungsten West, said: “Tungsten West has full confidence in EPC-UK as a drilling and blasting rock-on-ground provider. The preparations the team has already put in place in advance of contract work commencing is impressive and demonstrates complete customer focus and a commitment to achieving leaner operations. The reopening of the Hemerdon Mine and its promise to bring sustainable economic activity back to the area is a significant development and we anticipate the results that EPC-UK and Tungsten West will deliver.”

Tungsten West breaks ground at Hemerdon for TOMRA XRT ore sorters

Tungsten West says it has broken ground at its Hemerdon tungsten-tin mine in Devon, England, with the first sod turned for the installation of the TOMRA X-ray Transmission (XRT) sensor-based ore sorters.

This event, the company says, marks another major step in the company’s upgrade and refurbishment plans for the project’s processing plant.

Hemerdon is, Tungsten West says, the third largest tungsten resource globally, as well as being a previously producing mine that was operational from 2015-2018. Tungsten West purchased the Hemerdon Mine in 2019, and has since completed a bankable feasibility study that demonstrated an extensive reserve of approximately 63.3 Mt at 0.18% W and 0.03% Sn, as well as 37.4 Mt of saleable aggregate material. The company estimates that the life of mine is currently 18.5 years with the opportunity to extend this through future investment.

As announced earlier this month, the company took receipt of important long-lead equipment items, including the seven XRT ore sorters, which will make up part of the upgraded equipment the company plans to install into the front end of the processing plant. The XRT ore sorter will substantially improve and streamline operations once production restarts, minimising plant downtime, increasing recovery as well as a host of ESG benefits, it said.

After significant test work, Tungsten West engaged TOMRA to supply the seven units that are required to treat the run of mine throughput. This consists of six duty units and one standby unit. Orders and deposits for these units were placed in 2021 and the units have now been delivered to the UK and await final transfer to Hemerdon where they will be installed in the front end of the processing plant.

Additionally, the company is pleased to announce the appointment of James McFarlane as Managing Director of Tungsten West. McFarlane previously held the position of Technical & Operations Director of the company.

Max Denning, Tungsten West CEO, said: “We are extremely excited to have broken ground at Hemerdon this week, marking an important milestone in the project’s restart. Ensuring the UK and the western hemisphere have got access to two key critical minerals has never been more profound. We are also delighted to announce James as our new Managing Director; his extensive experience will prove invaluable in the company’s development as we move closer to first production at Hemerdon.”

Tungsten West set to bring Hemerdon tungsten-tin mine back into production

Tungsten West, the mining company focused on recommencing production at the Hemerdon tungsten and tin mine in Devon, England, has announced its intention to proceed with an initial public offering on London’s AIM market.

The company has conditionally raised £39 million ($53 million) before expenses, with plans to debut on the bourse on October 21 with a market capitalisation of approximately £106.2 million.

The net proceeds of the offer, together with the $49 million project financing from a fund managed by Orion Resource Partners, will be used to, among other things, execute the planned capital expenditure and corporate commitments of £44.6 million for improvement works at the Hemerdon Mine, bringing it back into commercial production.

Hemerdon is, Tungsten West says, the third largest tungsten resource globally, as well as being a previously producing mine that was operational from 2015-2018. Tungsten West purchased the Hemerdon Mine in 2019, and has since completed a bankable feasibility study that demonstrated an extensive reserve of approximately 63.3 Mt at 0.18% W and 0.03% Sn, as well as 37.4 Mt of saleable aggregate material. The company estimates that the life of mine is currently 18.5 years with the opportunity to extend this through future investment.

The mine already has the majority of its infrastructure in place, with previous owner Wolf Minerals Ltd having invested over £170 million into the development of the mine and its processing facilities, which include an open-pit mine, mineral processing facility and mine waste facility, the company says. With a substantial amount of existing infrastructure, the development costs associated with re-starting the mine are estimated to be £44.6 million. This existing infrastructure also means that the rebuild is only expected to take 12 months, with parts of the restart project already underway.

Having acquired the mine out of a receivership process, Tungsten West completed a significant amount of work to enable it to understand and address the issues historically experienced by Wolf Minerals, including a 6,113 m geological exploration drilling program and several technical studies. The company has identified the past issues experienced by Wolf Minerals that required rectifying.

“One of the main issues was a poor mineral process route design, with several items of equipment, particularly in the front end of the plant, causing plant downtime and hindering the recovery of the tungsten and tin minerals,” Tungsten West says. “Tungsten West has therefore designated a material proportion of its rebuild costs to modifying and updating the front-end of the processing plant. This will include replacing the existing crushing circuit with new duty and standby primary jaw crushers and secondary cone crushers.”

In addition, the introduction of X-ray Transmission ore sorting, which the company previously carried out tests on with TOMRA Mining in Germany, substantially reduces processing costs by rejecting around 70% of the ore fed to the sorters, it says.

Further upgrades to the plant commenced by the previous operator will be completed, including the dense media separation feed stockpile where 24 hours of surge capacity will be installed, decoupling the front-end of the plant from the concentrator circuit.

“Through these actions, the company expects plant operating time to improve from circa-53% under previous operatorship to the industry standard of circa-81% under Tungsten West,” Tungsten West says.

Tungsten West has identified further opportunities for by-product cash flow through the production and sale of aggregates. A new aggregate plant will be fed with ore sorter rejects and with the waste streams from the processing plant. The business plan is to sell to local aggregate consumers, such as GRS, providing them with a stable, long-term and sustainable source of these materials.

The company says it has implemented a number of initiatives to ensure a minimal impact on the surrounding environment and local community. These include optimising the plants low frequency noise to ensure minimal environmental impact and a fully cash funded £13.2 million restoration bond.

Max Denning, CEO of Tungsten West, says: “With the proposed £39 million raise announced today, and the £36 million funding package from Orion, we will be fully funded for the development of Hemerdon back into production. We look forward to welcoming new investors into this compelling business and working with all our stakeholders to ensure that the newly reinvigorated Hemerdon mine is a beacon of mining excellence in the UK.”

TOMRA receives positive ore sorting signals as virtual offering gains pace

While the effects of COVID-19 continue to be felt across the mining equipment, technology and services (METS) sector, the time away from the office or mine site has enabled many within the industry to carry out work that could lead the industry into a whole new growth cycle.

The jury is out on when such an upturn could occur – these economic studies will not necessarily result in a positive mine investment decision – but this activity, coming alongside billions of dollars of investment from governments and central banks, bodes well for the future.

One company that has witnessed this increase in interest is TOMRA Sorting Mining. The Germany-based firm, known to miners for providing high-tech sorting solutions, including X-ray Transmission (XRT) technology, has received many enquiries since lockdowns were established across the globe in March and April, according to Jens-Michael Bergmann, Area Sales Manager for Europe, MENA and India.

“The number of enquiries has definitely increased since COVID-19 restrictions were put in place,” Bergmann told IM last week. “There are many people deep into prefeasibility or feasibility studies (FS) on projects who need ore sorting data for this. They are very happy to have this provided remotely.”

Jens-Michael Bergmann, Area Sales Manager for Europe, MENA and India, TOMRA Sorting Mining

Such remote work could range from the inspection of photos sent from smart phones or distributed within MS Teams videoconferences, to more advanced analysis and testing of material, Bergmann explained.

Fortunately, TOMRA is setup for this type of remote interaction. Its initial sales process – where mining companies will at this stage be considered ‘leads’ – usually involves the exchange of emails/phone calls, inspections of photos/videos and a few kilograms of material to sample.

The next stage would include the performance test, which could involve hundreds of tonnes of material and usually a visit to the Test Center in Wedel, Germany.

It is this stage that has been revamped recently to cater to the lack of travel options for clients.

TOMRA has opened virtual testing facilities that enable miners to take informed purchasing decisions for their processing plants, regardless of where the client may be located.

This brings the capabilities of the company’s Test Center to the client, offering a video of their material being sorted in an ore sorting unit and a follow-up detailed report including assays (supplied by a sub-contractor), ore sorting data and an estimation of just how optimal a sort could be achieved on that material when it is subjected to XRT technology.

“You have a complete document and resource to base economic decisions on,” Bergmann said.

TOMRA, last month, presented the Virtual Demonstration and Test Solution to the market as a “temporary” platform, but recent experience shows the potential for this becoming part of the company’s standard offering.

“We understand it currently to be a temporary version, but in recent days we have had some positive replies that make us think we can continue to offer it in the future to certain clients,” Bergmann said.

In a COVID-19-affected world where every decision to travel on a plane requires strong justification, flying from North or South America, Asia, or Australasia to Europe for a one-day test is unlikely to be warranted.

Such a trip involving operations teams, executives and metallurgists is more likely to take place when a detailed week-long trial examining the effects of sorting technology on roughing, cleaning and scavenging stages is planned, Bergmann said.

“We don’t think in the future we will go virtual permanently, or personal permanently,” Bergmann said.

Testing time for tungsten-tin

TOMRA only established these virtual facilities on May 12, but it has already carried out four or five of these tests for clients that either had sent samples to Wedel ahead of lockdowns or dispatched them during the period when travel was restricted.

Mike Hallewell, Consultant at MPH Minerals Consultancy Ltd

One of these tests has been for Tungsten West, the owner of the Hemerdon tungsten-tin asset in Devon, England.

Previously owned and operated by Wolf Minerals Ltd, Hemerdon has been offline since late 2018 after Wolf fell into financial trouble as the operation failed to reach expected recovery rates.

According to Tungsten West, Hemerdon hosts the world’s fourth largest tungsten resource, with the potential to become the world’s largest.

With eyes on re-starting the operation and improving recoveries, the company has been looking at XRT ore sorting technology to ensure the new operating plan stacks up over the long term.

Mike Hallewell, Consultant at MPH Minerals Consultancy Ltd, has been helping the company explore its processing options and said the virtual test work TOMRA carried out on behalf of Tungsten West was part of studies looking into a re-start of the mine.

“They are at scoping study level and now moving towards feasibility level,” he told IM. “Ore sorting is a key component of that next phase.”

Hallewell said the recording of the virtual test on an Hemerdon ore sample at Wedel was well received by both himself and Tungsten West.

“You have got to convince the Plant Manager that is operating the plant that it (XRT ore sorting) is something he will be comfortable with, on top of making the case to boards of directors that may not have the same metallurgical expertise as the operation guys,” he said.

“When people see particles being blown by the air jets, it greatly enhances the visual understanding of the separation technique being employed,” he added. “To see is to understand.”

TOMRA has done well replicating the experience project and executive teams would have had in Wedel in person with this testing, Hallewell said.

“They have thought about the things that a client would want to do and see if they were there,” he said.

“They provide a powerful video of the air jet stones hitting the sides, the bins where material is deposited into, and even go as far as putting their hands in that bin at the end to try and replicate that tangible feeling of the sort.”

Future indicators

The more successful TOMRA is at replicating the in-person experience virtually, the more likely these ‘temporary’ options will become part of its permanent offering.

Another area that could ‘go virtual’ in the future is the maintenance and servicing side of TOMRA’s ore sorting business, Bergmann believes.

“The maintenance side is moving in that direction already to a certain degree,” he said.

“Since everybody is currently facing travel restrictions, the infrastructure for accurate virtual maintenance will, in the future, be set up in all plants. The awareness of the need to do this will increase,” he said.

Certain parts of the contract negotiation process could also go virtual, such as “all the unloved paperwork”, Bergmann added.

But, the installation and final signoff of these machines is unlikely to make this transition, at least in the near term.

That is despite an XRT ore sorting machine from TOMRA recently being installed at Sotkamo Silver’s mine in Finland when lockdown conditions were still in place.

On this installation, specifically, Bergmann said: “A lot of pre-commissioning work on that unit took place ahead of the delivery and it was a representative from Outotec – a salesperson with engineering experience – that was able to commission it with remote assistance from our specialists in Germany.”

Looking past the virtual offering, TOMRA could be set for an upturn in business in the near- and medium-term if the influx of enquiries it has recently received is converted into, first, demonstrations and, then, sales.

“In terms of first inspections of material, I would say we have had around 50 enquiries in this lockdown period,” Bergmann said.

“While everyone is planning now, if they hit the investment button, there could be a lot of orders backed up. The manufacturing could run into a bottleneck.

“It’s potentially a positive problem, but a problem nonetheless.”

Considering the amount of investment being pledged by governments to stave off an economic downturn, TOMRA is unlikely to be the only METS company facing such a ‘positive problem’.