Tag Archives: hydrogen

Primetals, Mitsubishi, Fortescue and voestalpine team up to tackle net-zero emission ironmaking

Primetals Technologies, Mitsubishi Corporation, Fortescue and voestalpine have signed a Memorandum of Understanding (MoU) aimed at designing and engineering an industrial-scale prototype plant with a new process for net-zero-emission ironmaking at the voestalpine site in Linz, Austria.

The collaboration will also investigate the implementation and operation of the plant, the companies say.

The new ironmaking process will be based on Primetals Technologies’ HYFOR and Smelter solutions. HYFOR is, according to Primetals, the world’s first direct reduction process for iron ore fines that will not require any agglomeration steps, like sintering or pelletising. A pilot plant has been in operation since the end of 2021, and Primetals has run numerous successful test campaigns over the last year including successful trials on Fortescue’s Pilbara iron ore products.

The new Smelter technology from Primetals Technologies is a furnace powered by electrical energy. It is used for melting and final reduction of direct reduced iron (DRI) based on lower-grade iron ore. In that way, it produces alternative green hot metal for the steelmaking plant.

The project planning phase will be used to design an industrial-scale prototype plant with a capacity of between 3-5 t/h of ‘green’ hot metal. It is the first solution to link a hydrogen-based direct reduction plant for iron ore fines with a smelter, Primetals says.

The main goal of the project planning phase is to develop the basis for decision to realise a prototype plant capable of continuous operation, and then to gain the know-how needed for the next step: a commercial full-scale plant. Another target is to investigate the use of various types of iron ores to produce DRI, hot briquetted iron and hot metal and, as a next step, draw conclusions about the individual process steps as well as different combinations of them.

The hydrogen used in the new plant will mainly come from Verbund, voestalpine’s and Austria’s leading renewable energy producer, who operates a proton exchange membrane electrolyser named H2Future. Located in Linz, this plant has a capacity of over 6 MW, and is still the world’s largest of its kind used at a steel plant. The H2Future plant will be upgraded to allow for the compression and storage of hydrogen gas before use in the combined HYFOR and Smelter plant.

Hubert Zajicek, Member of the Management Board of voestalpine AG and Head of the Steel Division, said: “voestalpine has a clear plan to decarbonise steel production with the greentec steel program. An important first step is the incremental shift from the blast furnace route to a hybrid-electric steel pathway from 2027.

“Over the long term, our mission is carbon-neutral steel production using green hydrogen, for which we are already undertaking intensive research into promising breakthrough technologies. With the joint project with Primetals Technologies and Fortescue, we are taking another new path towards achieving the goal of CO2-neutral steel production by 2050.”

Fortescue’s main responsibility in the new project is to provide knowledge about iron ore quality and preparation. In addition, Fortescue will supply various iron ores for the new plant.

Fortescue Future Industries (FFI) CEO, Mark Hutchinson, said the partnership was the perfect alignment of the company’s mining and renewable energy goals.

Metso Outotec to develop hydrogen-based DRI pilot plant in Germany

Metso Outotec says it will convert its existing 700 mm circulating fluidised bed (CFB) pilot plant in Frankfurt, Germany, for hydrogen-based direct reduction of fine ore as it looks to further drive down carbon emissions associated with the iron-making part of steel production.

The company will apply its Planet Positive Circored™ technology as part of this process, with the pilot plant able able to be used for the reduction of high-grade iron fines concentrate and to confirm the design basis for an industrial-scale Circored plant.

Commissioning of the plant is expected to take place by December 2023.

Parizat Pandey, Director, Direct Reduced Iron (DRI) at Metso Outotec, said: “The investment enables us to pilot the reduction of low-grade iron concentrate fines in larger quantities than what we do today, and, subsequently, perform downstream fines DRI electric smelting tests for hot metal production.

“The Circored processing route used in the process offers the lowest possible carbon footprint in the iron-making segment of an integrated steel plant.”

Once operational, the 700 mm pilot plant will be able to continuously produce 150-200 kg/h of direct reduced iron, using 100% hydrogen as the sole reducing agent, Metso Outotec claims. The pilot plant will have an integrated pre-heating and reduction section, followed by a gas cleaning and recirculation facility.

The investment includes installation of electric heaters in the process, making it an almost zero-carbon-emission plant, according to the company. Further, the data obtained from the use of electric heaters will be used to scale up the design of industrial heaters capable to running on renewable energy.

The Circored process is based on the fluidised bed knowledge and experience developed and applied by Metso Outotec over decades in hundreds of plants for different applications. The process applies a two-stage reactor configuration with a CFB followed by a bubbling fluidised bed downstream. The typical plant capacity is 1.25 Mt/y per line. Two or more lines can be combined using joint facilities and utility areas. In standalone plants, the produced DRI is briquetted to hot briquetted iron to enable further handling and safe transport.

If a Circored plant is integrated into an existing steelmaking facility, energy efficiency can be further increased by direct hot feeding of the DRI to an electric arc furnace, according to Metso Outotec.

Anglo American invests $200 million into new nuGen-focused First Mode vehicle

Anglo American’s ambitious plans to roll-out its nuGen™ Zero Emissions Haulage Solution (ZEHS) have been given a boost with the announcement that it has signed a binding agreement with First Mode Holding to combine to the two entities.

Such a deal was mooted back in June when Anglo American confirmed it was in exclusive negotiations with First Mode – and had agreed non-binding terms – to combine the nuGen ZEHS with the specialist engineering technology company.

The two companies’ collaborative efforts led to the launch of the prototype nuGen ZEHS hydrogen-powered mine haul truck at Anglo American’s Mogalakwena PGMs mine in South Africa on May 6, 2022. This month the truck reached a significant milestone when it completed initial commissioning and was introduced into the mine’s commercial fleet operations, including pit and crusher activities, according to First Mode.

The latest agreement will see the mining company invest $200 million into a combined business to help fund the ongoing development of ZEHS which, upon completion of the transaction, values the business in the order of $1.5 billion and results in Anglo American owning a majority shareholding in First Mode.

Upon closing of the transaction, expected in January 2023, Anglo American will enter into a supply agreement with First Mode to decarbonise its global fleet of ultra-class mine haul trucks, of which approximately 400 are currently in operation, in support of Anglo American achieving its 2040 target for carbon-neutral operations.

The roll-out across Anglo American’s haul truck fleet over the next circa-15 years is subject to the completion of agreed and committed studies across seven mine sites, certain performance and cost criteria, and relevant regulatory, corporate and shareholder approvals, the mining company said. The supply agreement also includes the appropriate provision of critical supporting infrastructure such as refuelling, recharging and facilitation of hydrogen production.

Anglo American says it also recognises its role in supporting broader decarbonisation objectives outside its own business and that the technologies and capabilities it develops as part of the nuGen project present opportunities in other industries that rely on heavy duty forms of transport, such as rail.

In addition to accelerating the development and commercialisation of the ZEHS technology, the new combined business will allow strategic third parties to co-invest alongside Anglo American and First Mode, offering the opportunity to accelerate their own decarbonisation and participate in the potential offered by the clean ZEHS technology, the company added.

“The new combined business retains the First Mode name and will prioritise developing nuGen ZEHS, building on three years of extensive development by Anglo American and First Mode,” the company concluded.

In a separate press release from First Mode, it mentioned that current First Mode President and CEO, Chris Voorhees, will transition to the role of Chief Product & Technology Officer, overseeing the company’s global product and technology development out of Seattle. Julian Soles, Anglo American’s head of Technology Development, will take over as First Mode CEO and be based in First Mode’s new headquarters in London.

Voorhees said: “First Mode was founded in 2018 with the goal of building the barely possible. We have done just that and our mission is now to rapidly decarbonize heavy industry by dramatically reducing our customers’ greenhouse gas emissions. I can’t imagine a team better suited to this urgent challenge.”

Soles added: “The First Mode mission is much bigger than a single haul truck. Mining is how the world obtains the materials needed for the clean energy transition, and it is where the carbon footprint starts. This is where the First Mode solution begins; starting at the source, in mining, to replace diesel and accelerate the clean energy transition.”

Hybrid Systems Australia and Horizon Power open renewable hydrogen demo plant

Hybrid Systems Australia, Pacific Energy’s integrated renewables subsidiary, has joined Horizon Power in officially opening Horizon Power’s renewable hydrogen demonstration plant.

The Australian-first project, which is being delivered in partnership by Horizon Power and Hybrid Systems Australia, will test the technological and commercial viability of renewable hydrogen as a baseload power source.

Hybrid Systems Australia was engaged to design, construct and commission the plant and worked closely with fellow Pacific Energy subsidiary, ENGV, to supply and install hydrogen equipment in the integrated system, including a 348 kW electrolyser, a specialised hydrogen compression and storage system and a 100 kW fuel cell.

The company also constructed a 704 kW solar farm to generate the renewable energy required to produce hydrogen.

In addition to providing valuable learnings for future applications of renewable hydrogen across the power generation sector, the system aims to demonstrate the efficiency of the hydrogen equipment such as the electrolyser and fuel cell, the ramp rate of hydrogen in response to a decline in solar generation, and the efficiency and storage capability of hydrogen fuel cells versus batteries.

Hybrid Systems Australia’s Executive Director, Mike Hall, said the project had proved ground-breaking, providing plenty of opportunities to further develop the company’s expertise and add value more broadly to the burgeoning sector.

“As an industry-first, this project has presented some really interesting opportunities for us to grow our capabilities in the green hydrogen project delivery space,” he said.

“It’s still a budding industry in Australia, so we really had to start at the beginning, from designing a system based on first principle thinking to navigating both existing and newly developing industry regulations and licensing designed for different applications. We’ve worked closely with Horizon Power and regulators to get the process right, and it’s been a very dynamic project, but we looked at any challenges as growth opportunities, and in doing so, we’ve been able to see things through fresh eyes.

“We’re looking forward to seeing the outcomes of Horizon Power’s Denham project and ongoing research and, furthermore, what it means for renewable hydrogen in utility-scale applications.”

The plant, which produced its first hydrogen in October, is expected to produce renewable energy equivalent to the average power demands of 100 households, or about 20% of Denham’s residential and business power needs, and will offset approximately 140,000 litres of diesel annually.

The project is a A$9.3 million ($6.2 million) investment, co-funded by Horizon Power, the Western Australian State Government and the Australian federal government. The Western Australia Government provided A$5.7 million of funding, with A$1 million through the Renewable Hydrogen Fund. The Australian Renewable Energy Agency (ARENA) provided A$2.6 million of funding through its Advancing Renewables Program.

Hybrid Systems Australia, a subsidiary of the QIC-owned Pacific Energy Group Holdings Pty Ltd, is currently commissioning Horizon Power’s renewable hydrogen demonstration plant, which is expected to be fully operational in early 2023.

FFI and IPL’s Gibson Island ‘green ammonia’ plans progress to engineering stage

Fortescue Future Industries (FFI) and Incitec Pivot Limited (IPL) will progress planning for the conversion of IPL’s Gibson Island ammonia facility to run on green hydrogen to its final stages, electing to commence front end engineering design as well as executing a framework agreement to govern the project through to a final investment decision, Fortescue Metals Group says.

With studies having confirmed its feasibility, the proposed project could see the construction of a new circa-500 MW hydrogen electrolysis facility at the site to produce green hydrogen as well as the retrofitting of IPL’s existing ammonia manufacturing facility to run on the green hydrogen produced on-site.

IPL’s Gibson Island facility will cease traditional fertiliser manufacturing early in the new year. As part of IPL’s decarbonisation strategy and in line with FFI’s goals to help heavy industry decarbonise, the Brisbane ammonia manufacturing and port facility conversion would be a world-first, Fortescue claims.

The two companies said last year they were partnering on a project to conduct a feasibility study to convert the ammonia-production facility to run on green, renewable hydrogen.

IPL Managing Director and CEO, Jeanne Johns, said the company was pleased to create a pathway to a more sustainable future for the Gibson Island ammonia manufacturing facility after traditional fertiliser production ceases.

By virtue of running on green hydrogen, the facility could ultimately produce up to 400,000 t/y of green ammonia, which can be exported to international markets as well as used in fertiliser or to help decarbonise local industry through its potential use as a low-carbon fuel source for ports, airports and heavy transport.

Front end engineering design (FEED) is a critical phase in development and will firm up technical specifications and cost, underpin procurement, as well as mature the project to final investment decision (FID), targeted for 2023. The FEED phase is anticipated to cost around A$38 million ($24 million), with the federal government, through the Australian Renewable Energy Agency, contributing A$13.7 million.

FFI CEO, Mark Hutchison, said around 100 jobs would be supported across the project in the lead up to FID, with first production, subject to FID, expected around 2025.

“Progressing this project into this final assessment stage is an important milestone in what will be a world-first conversion of an existing facility to become an industrial-scale producer of green hydrogen and green ammonia,” Hutchinson said.

“This collaboration aims to put Queensland and Australia ahead of the pack – not only in terms of the scale of production and supply of green hydrogen and green ammonia, but also in terms of demonstrating to the world that projects like this are feasible and that Australia has the foresight, the commitment, and the know-how to invest in and deliver them.

“We’re so pleased to have the support of a partner in IPL who are as invested as we are in developing real-world solutions to reduce our reliance on fossil fuels, and equally appreciate the support of the federal government who are a key enabler of us progressing the project to its final development phase.”

Johns said the announcement was a significant step forward for sustainability with IPL and FFI leading the global charge.

“The potential conversion of Gibson Island to green ammonia shows our commitment to pursuing opportunities to help create a more sustainable world in the new and emerging opportunities stemming from green ammonia,” Johns said.

“We are very pleased to be able to partner with FFI on what would be a world-first project, and I extend my thanks for the partnership and support from both the federal and Queensland governments.”

The parties are also working with the Queensland Government to understand how the project could benefit local energy markets and support the delivery of the Queensland Government’s Energy and Jobs Plan and broader development objectives.

TNG enlists Metso Outotec’s H2-based Circored process for Mount Peake concentrate plans

TNG Limited, an Australia-based resources company, has awarded Metso Outotec a study looking at reducing Mount Peake Ti-V magnetite concentrate using Circored™ technology, which uses hydrogen as its only reductant source.

As part of the study, Metso Outotec will perform a techno-economic assessment to integrate Circored technology into TNG’s TIVAN® process that provides for the extraction of high-quality products from Ti-V magnetite orebodies.

Metso Outotec has been granted this assignment following positive test work performed for TNG, which confirmed the applicability of hydrogen-based reduction for Mount Peake Ti-V magnetite concentrate.

The test work program, which was a precursor to a more detailed commercial and technical evaluation, was a success, TNG says, delivering the following results:

  • Achieved iron metallisation targets across a range of testwork parameters;
  • Demonstrated the viability of processing Mount Peake titanomagnetite concentrate with Metso Outotec’s Circored technology; and
  • Generated samples for downstream validation testwork.

Now, Metso Outotec will further define the process flowsheet for the Mount Peake project and prepare a preliminary capital cost and operating cost (+/-30%) for a Circored Plant.

The use of hydrogen is a key part of the TNG’s medium-to-longer-term strategy to reduce its net carbon footprint from processing operations at the Mount Peake project.

TNG Managing Director & CEO, Paul Burton, said the Metso Outotec study also complements its existing partnership with SMS group, which TNG has a strategic partnership with, to investigate green hydrogen production at Mount Peake.

Located 235 km north of Alice Springs, in the Northern Territory of Australia, Mount Peake will be a long-life project producing a suite of high-quality, high-purity strategic products for global markets including vanadium pentoxide, titanium dioxide pigment and iron ore fines, accordiing to TNG. The project has received Major Project Status from the Australian Federal Government and the Northern Territory Government.

Circored, part of Metso Outotec’s Planet Positive portfolio, is a process that uses hydrogen as the sole reducing agent in the reduction of fine ores, enabling carbon neutrality for metal processing plants.

Shell on the future of fuel switching

Mark Hannan, General Manager for Mining Decarbonisation at Shell, explores how mining operators can switch their fleets from diesel to low-carbon fuels as part of a wider transition to zero-carbon fuels.

The mining industry is in need of decarbonisation but delivering change at pace is a real challenge. There is huge pressure to achieve this when, it is estimated, 10% of the world’s energy-related greenhouse gas (GHG) emissions come from primary minerals and metals production, according to Nature Geoscience Magazine (2020).

For a mining company to achieve their decarbonisation goals, it is beneficial to maximise the benefits in the short term while providing greater flexibility for the long term. One such area that offers opportunities for this is fuel switching in mining fleets.

Decarbonisation drives the need for alternative fuels

No matter what stage a mining business has reached on its pathway to decarbonisation, it is important to review how its mobile assets impact the environment. McKinsey shows that between 40-50% of CO2 emissions in mining come from the diesel used for mobile assets.

Due to concerns around diesel fumes in confined spaces, the problem is largely being solved in underground sites – with some due to run entirely on battery-electric assets in the near term. In open-pit mines, where equipment is larger, emissions from diesel fuel are a challenge still to overcome, which is why fuel switching is essential to decarbonisation.

However, there are still many elements to consider when making the business case for alternative fuels. This includes the performance of alternative fuels in comparison with diesel, the capital investment needed to implement them and how widely available they are. That is before analysing the benefits of meeting emissions targets against the higher cost of using low-carbon fuels.

A net-zero future is coming, but it is not here yet

In the longer term, there are two diesel alternatives that will offer key routes to effective fuel switching: hydrogen and electricity.

Hydrogen is set to play a significant role in the decarbonisation of every industry – not least those featuring hard-to-abate sectors like mining. As well as reducing emissions in overall energy use across sites, hydrogen will provide a low-carbon alternative to diesel that also delivers higher energy density to drive the performance of mobile assets.

Government support for hydrogen power is growing rapidly and it is an area in which Shell is working closely with customers and original equipment manufacturers (OEMs) to drive innovation and deliver supply at scale. However, with hydrogen supply dependent on elements such as the availability and cost of technology, land, water, storage and transport, it is an alternative that will only start to present real impact from 2030 and beyond.

For off-highway equipment in mining, fleet electrification is often seen as a more relevant near-term solution. This is not surprising as electric power can not only contribute to reduced emissions but also help businesses shift away from their exposure to volatile diesel prices – potentially leading to a positive impact on total cost of ownership (TCO).

To help deliver on the mining industry’s longer-term aspirations for fleet electrification, Shell is developing a suite of modular end-to-end solutions for mining heavy-duty vehicles that decarbonises haul trucks while minimising the operational impact of electrification in a scalable, interoperable and sustainable way.

When looking to make the switch to electrification, mining companies must address the significant escalation in power demand that would come with full-scale electrification. Also, they will want to know the electricity is generated from renewable sources – helping them to reduce their Scope 1 and 2 emissions. Electrification powered by renewable energy will be a significant driver of change for mining sites, which is why Shell is working to overcome the barriers to increasing its renewable capacity – such as the need for upgrades to the grid and storage capabilities.

Low-carbon fuels offer an immediate next step for mining businesses

Hydrogen and electrification represent the future of fuel for mobility in mining. But, in the short term, there is another alternative that can act as a transition fuel and help lower emissions while businesses wait for hydrogen and electricity to become viable at scale: low-carbon fuels.

There are two types of low-carbon fuels relevant to mobility in mining:

  • Biodiesel – also known as Fatty Acid Methyl Ester (FAME); and
  • Renewable diesel – also known as Hydrotreated Vegetable Oil (HVO)

Though both are derived from organic biomass like waste vegetable oils and animal fats, there are differences in their chemical composition owing to a different manufacturing process that impact their use. For instance, biodiesel is the more affordable choice, yet most OEMs place a limit on the percentage it is possible to blend with conventional diesel due to quality concerns such as storage stability and performance in cold temperatures. Renewable diesel more closely resembles the composition of conventional diesel, meaning it can be blended in any ratio up to a concentration of 100%, but is more expensive due to the complexity in refinery processing. Crucially, both fuels offer a route to emissions reduction in mining – and a combination of the two is likely to be needed.

These low-carbon fuels offer a more immediate solution to the challenges of fleet decarbonisation in mining, without making costly investments in infrastructure. Not only can they be used in existing heavy-duty diesel engines, but, as long as they are in accordance with manufacturer advice, they also require no infrastructure investment. This makes them a more affordable short-term option that enables businesses to reduce emissions today while working to implement the ecosystem needed to transition to hydrogen and electricity tomorrow.

Overcoming the challenges of availability at scale

The merits of low-carbon fuels for a sites’ mobility needs might already be clear. After all, the technology is mature and it is easy to implement – certainly compared with hydrogen and electricity. However, there are still barriers to overcome before we see widespread adoption in the mining industry.

Availability and affordability are the two critical challenges. Despite its maturity, supply of low-carbon fuels is tight – especially given the remote regions that mining operations usually take place in. The need to comply with regional regulations on renewable fuels is also driving rising demand. For example, the EU Commission’s renewable energy directive has proposed increasing its target for renewable energy sources consumption by 2030 to 45% (up from its current goal of 32%).

Also, mining is not the only sector looking to alternative fuels to drive decarbonisation, meaning businesses will need to compete and trade with areas like commercial road transport to source low-carbon options. With more users needing access to alternative fuels, premiums for low-carbon fuels remain high. This can make low-carbon fuels less affordable and risks undermining any TCO improvements businesses can expect to realise from fuel switching.

It means that businesses are hesitant to act today as they wait for more capacity and greater competition to arrive – even though mining cannot afford to delay its emissions reduction efforts. That is why, at Shell, we are working to deliver additional capacity and competition. As well as investing in new production facilities (including a new biofuels facility in the Shell Energy and Chemicals Park Rotterdam, which will produce sustainable aviation fuel and renewable diesel made from waste in The Netherlands once it comes onstream), we are using our existing relationships with OEMs to help mining businesses get the most out of the low-carbon fuels they do have access to.

Collaboration will be critical to fuel switching success

Ultimately, if mining businesses are to meet their regulatory responsibilities while driving performance, they will need to unlock the opportunity that fuel switching provides. From low-carbon fuels to electrification to hydrogen, there is huge potential to reduce emissions while improving the TCO of mining mobility.

Successful fuel switching will require close collaboration with partners and suppliers to create a new fuel ecosystem by improving the availability and affordability of alternatives to conventional diesel. Only by working together will we deliver a new fuel future for mining, which is why Shell Mining is committed to supporting the industry on every step of its decarbonisation journey.

Photo credit: Getty Images

Pacific Energy adds hydrogen power options with ENGV, Nel arrangements

Pacific Energy has announced the acquisition of ENGV, an Australia-based leading turnkey provider of green hydrogen production and refuelling facilities, as well as entered multi-year exclusive supply arrangements for Australia and New Zealand with Nel ASA of Norway, one of the world’s largest manufacturer of electrolysers.

The ENGV acquisition further advances Pacific Energy’s in-house capabilities, uniquely positioning the group to be the only sustainable distributed energy provider in Australia with internal capability to provide and integrate all renewable energy technology and services, the company says. This includes solar, wind, battery, LNG and now hydrogen, as well as traditional gas- and diesel-fired generation.

ENGV was established in 2013 as a full-service provider in all areas of hydrogen, natural gas, biomethane and LPG and has grown with the evolving Australian clean energy market. It is recognised as the market leader in green hydrogen and renewable gas services and solutions, Pacific Energy says.

“ENGV was the first – and is the most experienced organisation – in deployment of hydrogen and renewable gas technologies in Australia and has completed multiple design and install projects incorporating hydrogen refuelling station facilities, electrolysers and fuel cells,” it said.

The company has a suite of long-standing supply agreements with global suppliers of hydrogen and renewable gas production, refuelling, compression and transportation equipment, including Nel, Hexagon Purus, PowerCell and KwangShin.

Jamie Cullen, Pacific Energy Group’s CEO, said he was thrilled to announce the addition of ENGV to the group.

“This is an incredibly exciting acquisition and milestone for our group, as we embark on a national growth strategy and add the final piece to complete our renewable energy capability profile,” he said. “We have been witnessing a transformation in our industry in recent years and our pipeline of potential new projects has evolved to be comprised of around 75% renewable energy. This compares with less than 20% only a few years ago, and we now have full turnkey capabilities across all major renewable energy technologies for our mining, industrial and government customers.”

Sean Blythe, Founder, and CEO of ENGV, added: “This is a great opportunity for ENGV to accelerate our growth in tandem with the rapidly expanding hydrogen and renewable gas markets in Australia. Becoming part of the fast-growing Pacific Energy group will bring mutual opportunities to our respective businesses and staff. Personnel from both organisations already have good working relationships resulting from the work we are doing together at Denham in Western Australia, where we are delivering Australia’s first renewable hydrogen microgrid facility.”

Cullen, meanwhile, said he was excited to have cemented exclusive electrolyser supply arrangements with Nel. The company recently attended the official opening of Nel’s latest production facility in Herøya, Norway, which is the world’s first fully automated electrolyser production facility, with an initial capacity of 500 MW, scalable up to 2 GW.

Established in 1927, Nel supplies electrolysers globally and estimates that is has supplied over 75% of all electrolysers to date globally. This includes a 3.5 MW electrolyser it supplied to ENGIE as part of a project to deliver the world’s largest fuel cell haul truck for Anglo American.

Nel has had supply agreements in place with ENGV since 2018 and these have now been renewed with Pacific Energy exclusively across the Australian and New Zealand markets, Pacific Energy said.

Nel’s Vice President Sales & Marketing (EMEA – Oceania), Raymond Schmid, said: “We recognise the importance and emergence of Australia in the green hydrogen market. The abundance of solar, wind and land resources provide the perfect landscape for green hydrogen production and together with Pacific Energy, we are excited to play a major role as the industry develops this decade and into the next.”

Rio Tinto to provide Salzgitter with iron ore for hydrogen direct reduction steelmaking trials

Rio Tinto and the Salzgitter Group have signed a Memorandum of Understanding (MoU) to work together towards carbon-free steelmaking by studying optimisation of Rio Tinto’s high-quality Canadian and Australian iron ore products for use in Salzgitter’s SALCOS® green steel project in Germany.

Under the MoU, the two companies will explore optimisation of iron ore pellets, lump and fines for use in hydrogen direct reduction steelmaking. The two companies will also explore the potential for greenhouse gas emission certification across the steel value chain.

Rio Tinto produces iron ore pellets and concentrate at Iron Ore Company of Canada and iron ore lump and fines in Western Australia’s Pilbara region. The partnership will focus on the potential use of these products in the SALCOS – Salzgitter Low CO2 Steelmaking – program, which is targeting virtually carbon-free steel production, starting step-by-step in 2025 using hydrogen direct reduction.

Rio Tinto Chief Commercial Officer, Alf Barrios, said: “We welcome the chance to work with Salzgitter on ways to accelerate green steelmaking, in keeping with our commitment to reduce emissions across the steel value chain.

“Salzgitter has one of the world’s most advanced green steelmaking projects. Rio Tinto is excited at the opportunity of supplying our product and combining our technical expertise with that of Salzgitter to help advance the SALCOS project.”

Salzgitter Flachstahl GmbH Chairman of the Management Board, Ulrich Grethe, said: “With this alliance, we want to combine the knowledge of both companies to make further progress with low-carbon steel production.

“In this context, the Salzgitter Group is relying on strong partners, as set out in our ‘Salzgitter AG 2030’ Group strategy, in line with its motto of ‘Partnering for Circular Solutions’.”

The agreement follows a similar technical cooperation pact signed with LKAB last week, which could see the Europe-based iron ore miner supply high-quality iron ore pellets to Salzgitter for its SALCOS project.

Rio Tinto says it is committed to reaching net zero emissions by 2050 and is targeting a 15% reduction in Scope 1 & 2 emissions by 2025 (from a 2018 baseline) and a 50% reduction by 2030. Rio Tinto’s approach to addressing Scope 3 emissions is to engage with its customers on climate change and work with them to develop the technologies to decarbonise.

Under the SALCOS program, Salzgitter’s carbon-based blast furnace route will gradually be replaced from the middle of this decade by direct reduction plants, initially operated by natural gas and then with a steadily increasing proportion of hydrogen.

dynaCERT carbon emission reduction engine tech heads to South American open-pit mines

dynaCERT Inc says seven of its HydraGEN™ Technology Units (HG1R, 4C and 6C units) are to be installed at open-pit mines in Peru, Argentina and Brazil.

H2 Tek, dynaCERT’s dealer, focuses on equipping mining companies throughout the globe with dynaCERT’s proprietary patented HydraGEN technology. In conjunction with its partners, H2 Tek has indicated to dynaCERT that the company’s proprietary 4C and 6C HydraGEN Units are very desired by several world-class open-pit mining operations in the Americas, which are owned and operated by some of the world’s largest international mining conglomerates.

Along with other H2 Tek installations, these technologies will be installed in open-pit mines on various equipment, including Caterpillar 793 and 777 haul trucks and a large 4.5 MW diesel generator with a Cat 280-16 engine.

“Global mining companies recognize the immediate imperatives of utilising commercially and readily available technologies to reduce their carbon footprint and welcome and embrace dynaCERT’s patented 4C and 6C HydraGEN Technology, which is particularly suited to the mining, construction and oil & gas industries,” dynaCERT says.

In 2021 and 2022, dynaCERT’s 4C and 6C HydraGEN technology has been redesigned to adapt to the rigourous requirements of the harsh environments of open-pit mining operations, which are commonly located at high altitudes and inclement conditions in remote areas throughout the globe, it said.

David Van Klaveren, Vice President of Global Sales of H2 Tek, said: “Our national and multinational customers appreciate the significant promise of dynaCERT’s HydraGEN technology and look forward to advancing progress for their ESG priorities through its successful implementation.”

Jim Payne, President & CEO of dynaCERT, added: “I am very pleased to now deploy our proprietary HydraGEN technology with global mining companies operating under harsh conditions. Our proprietary and patented HydraGEN technology is designed to reduce fuel consumption in internal combustion engines and reduce carbon and NOx emissions: so important to providing a global solution to reduce pollution. Progressive mining companies are the trailblazers that fight a noble battle against air pollution.”

dynaCERT manufactures and distributes carbon emission reduction technology for use with internal combustion engines. As part of the growing global hydrogen economy, its patented technology creates hydrogen and oxygen on-demand through a unique electrolysis system and supplies these gases through the air intake to enhance combustion, resulting in lower carbon emissions and greater fuel efficiency, it says.