Tag Archives: MEDATECH

MEDATech solves precision problem in Wassara drilling with Borterra WaterBox

Ontario-based MEDATech has completed what it says is a world first with the development of a self-contained diesel- or electric-powered unit that pumps water at the exact flow rates that down-the-hole (DTH) water-hammer drills require.

The MEDATech Borterra WaterBox™ water hammer drill pump digital controls deliver precise pressure and flow rate, according to the company, allowing such drilling (also known as ‘Wassara drilling’) to be carried out precisely in sensitive applications.

A digital-control system manages pump speed and engine throttle to maximise efficiency and fuel economy, while precise pressure, flow and other key data (up to 3,000 psi at 120 gallons per minute (207 bar at 454 litres per minute) are displayed on the colour screen of the radio remote control.

MEDATech’s Borterra drilling division designed the WaterBox to solve a specific problem, it said.

“The company had built a drill with two drilling technologies, the WS6000, for Alabama Power’s Southern Company in 2020,” it explained. “The hybrid water-hammer/sonic drill was built to drill through embankment dam overburden and karst without destabilising the surrounding ground, for grouting. But it required a more precise flow rate and pressure control than any pump could deliver at the time in order to keep holes straight, true and uniform. So we built our own.”

MEDATech Borterra Product Manager, Scott Dalrymple, says water hammer drilling is a very precise science.

“Creating effective grout curtains in embankment-dam drilling requires hundreds of straight holes,” he explained. “One thing that will throw a hole off is inconsistent water pressure and flow rate. We had to solve that for the WS6000.”

The issue with traditional pumps for water-hammer drilling has always been that flow rate and pressure are hard to control. This causes drilling irregularities and can result in a slower drill time and/or a less accurate hole, MEDATech says. With WaterBox, the operator sets the precise desired flow rate and/or pressure. Both values are displayed in real time on the remote control and the operator can fine tune as needed – as drilling goes deeper or ground conditions change. Fine-tuning is necessary to maintain maximum penetration rates while ensuring precision and repeatability for each hole drilled, it said.

The self-contained, self-sufficient pumping unit is built into a modified 10 ft x 8 ft x 8 ft shipping container complete with forklift pockets, crane lifting points and an automatic ANSUL Fire Suppression system. Compact, rugged and highly portable, it is proving popular within the Wassara-drilling community, MEDATech says.

ABB, MEDATech demo fully automated fast charging solution on Western Star 4900XD-e

A new prototype ultra-fast charging platform for heavy-duty applications that features the ABB Ability™ eMine FastCharge charger and MEDATech ALTDRIVE battery-electric powertrain solution is helping automate the charge of a Western Star 4900XD-e machine in a trial application.

ABB developed an integrated charging infrastructure, with the latest charger technology and a future-proof automated connection device, while MEDATech created a battery-electric powertrain that includes a charge-reception system that can be integrated into any heavy-duty vehicle.

Together with MEDATech’s complete ALTDRIVE battery-electric vehicle system, ABB’s ultra-fast charging forms a complete electric vehicle package that helps OEMs move away from diesel, according to MEDATech. Integrating ALTDRIVE into new vehicle builds will enable OEMs to fast-track their battery-electric offerings, complete with ultra-fast charging.

Offering up to 600 kW of power, the eMine FastCharge solution was launched by ABB in September as part of its ABB Ability eMine portfolio of solutions.

ABB and MEDATech have previously worked together on the conversion of the Western Star 4900 tractor to battery-electric operation, but this is the first time the two have tested the automated charging functionality of the FastCharge solution on ALTDRIVE technology.

“Designed for the harshest environments, this flexible and fully-automated solution can easily be installed anywhere, and can charge any truck, without the need of human intervention,” Mario Schmid, Project Lead Engineer at ABB, said.

Charging occurs with no help from machine operators, according to the companies. Drivers station their vehicles next to the charger and the ABB Ability eMine FastCharge does the rest. When the system senses a vehicle is near, it moves the connection pin into position and inserts it into the receptacle, carrying out charging in a fully-automated fashion.

With ABB’s charging capability matching charging cycles to the production, charging times of less than 15 minutes can be achieved, according to the companies.

On September 10, ABB and MEDATech announced the signing of an MoU to jointly explore solutions to decarbonise mining operations through charging solutions and optimised electric drive systems in BEVs for heavy-duty applications.

ABB and MEDATech team up to tackle mine decarbonisation

ABB says it has signed a Memorandum of Understanding (MoU) with MEDATech to jointly explore solutions to decarbonise mining operations through charging solutions and optimised electric drive systems in battery-electric vehicles (BEVs) for heavy-duty applications.

The two companies will share expertise and collaborate in bringing solutions to market that will reduce the greenhouse gas (GHG) emissions associated with heavy machinery in mining, they say.

Technology provider ABB and MEDATech bring complementary expertise to designing and building electric heavy mobile equipment. The collaboration could involve exploring further development and possible technologies for high power and automated charging and connector systems to facilitate the adoption of BEVs in industries with heavy machinery.

“We are very excited to be working with ABB in this new and dynamic field of electric vehicles and will bring our advanced drive train technology to the forefront alongside ABB’s advanced charging technology,” Rob Rennie, Founder and President of MEDATech, said. “Collaborating to accelerate the adoption to emission-free transport systems enabling cleaner operations is truly at the heart of our company.”

The collaboration with MEDATech, which largely works across the mining, construction and energy sectors, is the latest in a series that ABB is developing with OEMs and technology innovators to accelerate the transition to all-electric mines.

Mehrzad Ashnagaran, ABB’s Global Product Line Manager Electrification & Composite Plant, said: “Within the ABB Ability™ eMine framework, ABB is increasingly working with OEMs and technology innovators to fast-track the development of new emissions-reducing systems through the electrification and automation of the whole mining operation. Strategic collaborations, such as with MEDATech, provide solutions that support responsible mining operations. The aim of our combined solutions is to enhance the efficiency and flexibility of customer businesses, contribute to the reduction of CO₂ and the realisation of a sustainable society.”

Nic Beutler, ABB’s Global Product Manager Power System & Charging Solutions, added: “The mining sector has set clear and ambitious targets to decarbonise operations for a more sustainable future. To meet or even exceed productivity targets while not compromising on safety, new thinking and technological solutions are required. ABB and MEDATech are an ideal match for exploring the steps needed to reach net zero emissions for heavy-duty industrial machinery.”

ABB recently launched ABB Ability eMine, an approach, method and integrated portfolio of electrification and digital systems designed to accelerate the decarbonisation of the mining sector. Included within this was the eMine FastCharge solution (prototype pictured) and eMine Trolley System.

MEDATech, meanwhile, recently launched what it says is the “Deswik of underground fleet electric vehicle electrification” with its Electric Vehicle Fleet Optimization Software (EV-FOS).

The agreement with MEDATech will complement ABB’s engineering and technology expertise on-board and off-board mining vehicles and allow for much needed and lasting solutions for the industry, it said.

MEDATech provides its ALTDRIVE drivetrain technology to OEMs and end users while consulting and developing optimisation tools to realise the efficient and cost-effective implementation of electric fleets, according to ABB.

Based in Ontario, Canada, it has built extensive know-how and expertise in designing, building and testing of prototype systems and vehicles since 2003. It launched the 100% electric mining haul truck, the Western Star 4900XD (pictured below), which has ultra-fast charging capability, accepting a charge power of 600 kW.

With ABB’s charging capability matching charging cycles to the production, charging times of less than 15 minutes can be achieved, according to the company.

Muckahi monorail-based tech removed from Torex’s Media Luna plans

Torex Gold has decided to move forward with “conventional development and mining methods” for its planned Media Luna project in Mexico, following the outcome of various risk assessments, extensive comparative financial analyses, and the results to date of the Muckahi test program at El Limón Deep (ELD), the company said.

In the company’s June quarter results – which saw “solid operational performance” of 118,054 oz of gold produced, adjusted EBITDA of $122.1 million and generation of $21.9 million of free cash flow – Torex said the monorail-based technology would no longer be used in the Media Luna feasibility study currently being worked on and expected to be published in a technical report in the March quarter of 2022.

It explained: “After an analysis of the results to date of the Muckahi test program at ELD and an assessment of business risks, the board has approved a decision to pursue the Media Luna feasibility study on a conventional mining basis. While the monorail-based technology has progressed since the beginning of the ELD test program, testing to date of the individual components operating as an integrated system demonstrates that additional process and equipment engineering is required to achieve desired advance rates, cycle times, and associated cost efficiencies, and that there is insufficient available upside in using the technology as it relates to financial or schedule considerations for Media Luna.”

The use of the Muckahi technology, invented by former President and CEO Fred Stanford, would also leave the company with “no alternative readily available once the decision is taken to drive the two steep ramps at Media Luna, since there would be no access to the ore via any other method without considerable investment and schedule disruption associated with driving conventional ramps”.

Apart from the technical risks, there are additional business risks that require time and consideration such as permitting and regulatory compliance given there is no precedent for the technology, Torex added.

The company believes the use of a conventional mining process is a more prudent approach to mitigate operational and financial risk to the business given Media Luna will be its primary source of feed at the Morelos property after mid-2024.

It did leave the door open for use of the Muckahi technology in the future, saying aspects of the monorail-based technology were currently being deployed for development of the Guajes Tunnel.

“Management will consider including a preliminary economic assessment-level study to utilise monorail-based equipment to develop the smaller EPO deposit near Media Luna as part of the overall technical report to be released in Q1 (March quarter) 2022,” it said.

Potential deployment of the technology at EPO, which hosts an inferred resource of 1.01 Moz of gold-equivalent, would allow for additional testing of the integrated system within a live production environment.

The Muckahi system was engineered by MEDATech in close collaboration with Stanford.

The monorail mining system is billed as providing a surgical way to mine narrower orebodies more efficiently. It involves three logistical paradigm shifts: steep ramps (a quarter of the length of conventional ramps), roof-mounted monorails and equipment to run on them and minimal underground infrastructure.

The technology is expected to significantly reduce capital expenditure, operating expenditure and cut time-to-revenue by as much as 80%, according to Stanford. It will also produce 95% fewer underground greenhouse gas emissions.

The Muckahi technology was included in the Media Luna preliminary economic assessment, but the company always noted that it was experimental in nature and had not yet been tested in an operating mine.

When publishing its 2020 financial results in February 2021, Torex noted: “Since the date of the technical report, the majority of the components of the Muckahi system have been tested by Torex and their functionality demonstrated. Although, the components have not yet been tested together as a system to demonstrate the rates per day in which tunnels can be excavated and material removed from long hole open stopes.

“Testing of the integrated system will continue and is expected to be completed in the second (June) quarter of 2021. Drill and blast fundamentals, standards and best practices for underground hard-rock mining are applied in the Muckahi system as described in of the technical report, where applicable. The proposed application of a monorail system for underground transportation for mine development and production mining is unique to underground mining. There are existing underground mines that use a monorail system for transportation of materials and equipment, however not in the capacity of Muckahi which is described in detail in the technical report. The mine design, equipment performance and cost estimations involving Muckahi in the technical report are conceptual in nature, and do not demonstrate technical or economic viability.”

At the same time as updating the market on its plans to use conventional development and mining methods at Media Luna, Torex said its Board had approved a pushback of the El Limón open pit, which is anticipated to add around 150,000 oz of gold production and extend open-pit mining to mid-2024. This would align with first production from Media Luna in 2024.

First Muckahi mining system on site in Mexico, Torex Gold says

At the same time as reporting record gold production for 2018, Torex Gold has provided an update on its innovative in-development Muckahi underground mining system.

The company recovered from a blockade at its ELG mine, in Mexico, which affected operations earlier in the year, to produce 353,947 oz of gold in 2018, with 96,316 oz of that coming in the December quarter. Torex guided for production of 430,000 oz in 2019.

In tandem with these results, the company’s President and CEO, Fred Stanford, talked up the company’s Muckahi concept, an alternative to established underground mining processes that, Torex says, can create a more continuous mining process able to accelerate return on investment.

Stanford, who is credited as the originator of the technology, said in the company’s 2018 financial report: “If proven successful in 2019, the Muckahi technology will reduce the costs of future underground mining on the Morelos property (which includes the ELG and Media Luna assets) and will provide us with a competitive advantage when bidding on potential acquisitions and pursuing other options for commercial deployment.”

He said the testing programme for the Muckahi technology was expected to be completed in 2019, with the first of four Muckahi machines on site in Mexico. “We anticipate breaking rock with it in the next couple of months,” he said, adding that as the other machines arrive, the company would incorporate them into the test programme.

The planned use of the Muckahi system, which is also being developed with help from MEDATECH, in the most recent preliminary economic assessment for the Media Luna project saw the after-tax internal rate of return jump from 27% to 46%.

For 2019, Torex’s Muckahi plans include:
• Development on the level;
• Development on a 30° down-ramp;
• Long-hole open stope fragmentation to 95% passing 400 mm, and;
• Mucking a long hole open stope with a slusher.

The Electric Mine logo

The Electric Mine conference shifts gear

With just under four months to go, The Electric Mine conference is charging up to full capacity.

IM has been able to assemble a world-class speaker line-up covering the entire mine electrification process – from R&D and power infrastructure, to battery charging and electrified equipment.

The conference, to take place on April 4-5, 2019, in Toronto, Canada, will host the great and the good in this fast-evolving sector and hear case studies from real mine trials or applications.

This includes a presentation from Kirkland Lake Gold, which is currently running one of the largest in-production underground battery-electric fleets in the industry at its Macassa gold mine in Canada.

Just last month, IM heard that some 33 units were active underground at the deep and high-grade mine in Ontario and Andrew Schinkel, Senior Electrical Engineer of the Macassa Mine Complex, will most likely be able to add to that number, as well as comment on the fleet’s productivity, come conference time.

The soon-to-be-in-production Borden gold project, also in Ontario, will be under the spotlight at the event, with the involved OEMs and mining company collaborating on stage as they have during mine development.

Maarten van Koppen (pictured, left), Senior Project Engineer at Goldcorp Porcupine Mines, Jeff Anderson, Senior Mechanical Designer, MacLean Engineering, and a Sandvik Mining co-speaker (to be confirmed), will present: ‘The Borden Gold Project – lessons learned from the ‘mine of the future’ and the crucial role of partnerships in building an all-electric underground mine’.

The major mining representation does not end there.

Samantha Espley, Director of the Technology & Innovation Centre for Mining and Mineral Processing, Vale Base Metals Operations, will chart the mining company’s roadmap to underground electrification in Sudbury during her talk; expect the OEMs in the room to ask questions about the future fleet for the Creighton deep zone!

Caterpillar’s Product Manager for Underground Technology Solutions, Jay Armburger, is also set to take to the stage at the Radisson Admiral. The focus of his talk will be on heat generation, comparing battery and diesel LHDs underground. A few passing references to the proof of concept R1300G LHD trials it ran not all that long ago at an underground mine in Sudbury, Canada (pictured, right), are likely.

We’ll also hear about developments above ground.

A joint presentation from Karl Trudeau (Nouveau Monde Graphite), Michel Serres (ABB Canada) and David Lyon (MEDATECH) will shed some light on what it will take to create an all-electric open-pit mine able to produce 100,000 t of graphite concentrate at NMG’s Matawinie project in Quebec, Canada.

Those three speakers could be in the front row for Per-Erik Lindström’s talk on The Electric Site project in Sweden.

Lindström, Vice President Global Key Account Management for Volvo Construction Equipment, has seen first hand how battery-electric equipment can move the needle in terms of cost and emissions at the Skanska Vikan Cross quarry, just outside of Gothenburg, and there are more than a few miners interested in the prototype machines (pictured, left) the OEM has manufactured for this purpose.

These presentations will be complemented by a talk from Heather Ednie, Managing Director, Global Mining Guidelines Group, on the second edition of the group’s Battery Electric Vehicle guideline; an opening keynote from Ali G. Madiseh, Canada Research Chair in Advanced Mine Energy Systems, Norman B. Keevil Institute of Mining Engineering, University of British Columbia, titled: ‘The Electric Mine: a new norm in mine energy systems’; Erik Isokangas, Program Director, Mining3, discussing the value proposition for autonomous electric haulage; and Doug Morrison, President and CEO, Centre for Excellence in Mining Innovation (CEMI), looking at electrification to maximise productive capacity.

Meanwhile, Justin Bain, Chief Executive Officer, Energetique (Energy/Mobility), will fly in from Australia to pronounce the death of diesel Down Under – his firm has recently been involved in the conversion of diesel utility vehicles to battery-electric drive.

Along similar lines, Paul Miller, of Miller Technology, will talk about what goes into developing an innovative fully-electric light utility automobile, designed for continuous underground operation.

IM then has two behemoths in the mine power sector, Siemens and Schneider Electric, looking at the all-important infrastructure that goes into electrification.

Dr Bappa Banerjee, General Manager, Mining Equipment, GE Transportation, will look at the electric future for load and haul in his keynote, Mathieu Bouffard, Project Manager, Adria Manufacture, will cover battery charging and power management of battery-electric vehicles, and Don Duval, CEO of NORCAT, will showcase some of the new technologies that have come out of the organisation’s Underground Centre in Sudbury.

This speaker line-up is only set to improve as we move into the New Year, with IM in advanced discussions with more OEMs and miners looking to present.

The first global event on mine electrification continues to charge ahead…

If you’d like to hear more about The Electric Mine conference – including presenting and sponsorship opportunities – please feel free to get in contact with Editorial Director Paul Moore ([email protected]) or Editor Dan Gleeson ([email protected]).

To view the full speaker line-up, venue details and to take advantage of the soon-to-expire Early Bird attendance rate, please visit the event homepage here.