Tag Archives: mine electrification

Sandvik retaining the platform approach for load & haul electrification

Sandvik’s aim to electrify the underground mining space have been gaining traction over recent years, with single machine trials and deployments that typified the early stages of its mission now replaced by fleet-wide agreements that, if not already in operation, will be starting up underground in the years to come.

As with all transitions, the electric one has not been easy. There have been teething issues along the way; whether that is equipping batteries for the harsh nature of an underground mines, educating employees about best practice maintenance and operations of this equipment, or facing an onslaught of questions about potential battery fires witnessed in passenger vehicles via YouTube.

Just how much traction the company has been gaining was made clear late last year during its Capital Markets Day event.

Here, the company outlined that battery-electric vehicles accounted for 15% of all load and haul orders in the year to the end of October. On top of that, it displayed an impressive pie chart showing that, from January-October 2023, Sandvik had won more than 75% of orders for battery-electric equipment.

These numbers do not factor in the cable-electric loaders the company has been selling for decades, plus the underground battery-electric drilling equipment that trams on battery power at mining operations across the globe.

For all this positive momentum, battery-electric does not make sense for everyone…yet.

IM has documented a series of both diesel-electric and hybrid diesel-electric LHD sales in Australia recently, with at least one of these sales following the trial of battery-electric equipment.

Sandvik has made clear that it will have something in store for miners in transition between diesel and fully-electric operation, stating last year that it was developing diesel-electric trucks and loaders for the industry.

Unlike some of its peers, Sandvik is deliberately building this offering with fully-electric operations in mind.

“Currently we are developing diesel-electric solutions both for trucks and loaders,” Juha Virta, VP Sales and Marketing for the Load and Haul Division within Sandvik Mining and Rock Solutions, told IM. “We aim to maximise the customer value by utilising modular design in our equipment: battery and diesel-electric equipment will have commonalities eg in drivelines, hydraulics, electrics and spare parts.”

This approach will make it easier for customers to transfer from diesel-electric equipment to battery-electric equipment, Virta says. The “commonalities” could also prove beneficial in developing the skill sets required from service personnel.

“Energy storage elements are also included in our development portfolio, enabling, for example, hybrid solutions, delivering positive results in the area of fuel consumption and the equipment performance,” he added.

This is all part of an increasingly diverse offering from the OEM that Brian Huff, Vice President of New Technologies for the Load and Haul Division within Sandvik Mining and Rock Solutions, mentioned during the Capital Markets Day.

He said: “We’re taking the technology of our battery-operated drills, loaders and trucks, and expanding that with diesel-electric using the same motors, inverters and componentry in a modular approach that allows us to offer diesel solutions with the same electrified driveline from our battery-operated equipment.”

The developments the company is making as part of this project are being displayed on the TH66X diesel-electric demonstrator – a Toro diesel-powered truck that has been retrofitted with an electric driveline – that customers first saw in Turku, Finland, in 2022. This machine is currently in factory tests, according to Virta, saying that component validation and a variety of simulations were also being run.

“The program also includes a significant amount of testing in a real underground mine environment,” he added. “Developing new technology and ensuring its performance takes some time, and sufficient and careful tests are extremely important – we are in a very good progress with that currently.”

For this, Sandvik is using not only its Test Mine in Tampere, Finland, but also the Pyhäsalmi mine. Sandvik is using the latter operation – owned by First Quantum Minerals – as part of its involvement in the Callio consortium: a group of companies focused on developing ‘FutureMINE – the future digital test mine project’.

One of the other participants in this consortium is Byrnecut, who has been partnering with Sandvik based on a recent LinkedIn post by Sandvik Mining and Rock Solutions.

“We have long traditions with working in close collaboration with different customers, and that will continue to be Sandvik approach also going forward,” Virta said when asked about this partnership. “Byrnecut is one of our customers and a very important partner for us, and, along with Barminco, will be one of the first companies to test the TH66X in the field.”

Considering the majority of the team focused on this diesel-electric demonstrator are based in Turku, one would expect this facility to have significant influence on the commercial offering that follows.

The facility is undergoing an expansion focused on incorporating an additional 7,000 sq.m of production and storage space previously occupied by Tunturi, a manufacturer of bicycles and fitness equipment. The whole of the plant for load and haul equipment is also set to be enhanced and modernised.

Petri Liljaranta, Supply Director for the Load and Haul Division within Sandvik Mining and Rock Solutions, says the expansion is progressing as planned with all but a few of the company’s finishing functions relocated according to its plans. “This final part of the project is expected to be finished in the June quarter,” he added.

One of the expansion project’s targets was to increase the manufacturing space at its facilities, and this target has already been achieved, with the company well equipped to respond to growing volume needs in the coming years, according to Liljaranta.

“Based on current views, the battery-electric vehicle manufacturing capacity is expected to meet expected market demand during 2024,” he said.

Sandvik looks to shape the surface drilling electrification conversation

“We are showing what technology can do today.”

These were the words Mats Eriksson, President of Sandvik Mining and Rock Solutions, during the Capital Markets Day in Tampere, Finland, last week when describing the launch of Sandvik’s latest battery-electric concept surface drill rig.

This rig is representative of more than just technological advances in the mining industry, also acting as a tangible example of Sandvik’s efforts to become a leader in the surface drilling space.

It has been four years since Sandvik announced this ambition, with the company having made significant headway on achieving this goal.

Sandvik doubled its order intake for rotary drills from 2019 to 2022. Over this three-year period, the company launched the Leopard™ DI650i down-the-hole (DTH) drill rig to support fully autonomous drilling operations and went on to capture major autonomous drilling contracts in Latin America, Australia and Finland.

The OEM is looking to at least double its surface mining revenue from 2022 to 2028. Key contracts in 2023 from Boliden and MACA have already provided early positive momentum towards such a goal.

There is potential for Sandvik to steal a march on its competitors in this space – companies who have already been able to automate the largest blasthole drills in key markets in the Americas and Australia – by leveraging the electrification expertise it has built up underground.

This was highlighted by Eriksson last week and was reiterated further when IM spoke to the company’s experts in Tampere in front of the second battery-electric surface concept rig.

The concept vehicle is the first in its size class, capable of drilling DTH holes up to 229 mm in diameter and blending the autonomy of battery with the continuous endurance of power cable, Sandvik says.

Dan Gleeson, IM Editor (centre), with Petri Virrankoski, President of the Surface Drilling Division (left), and Lauri Laihanen, Vice President, R&D of the Surface Drilling Division (right)

Flexibility and optionality are the name of the game, with the rig equipped with a battery able to carry out seven hours of tramming or one hour of drilling based on Sandvik research, plus plug into electrical infrastructure with a  37-mm diameter, 180-m-long tethered cable.

Lauri Laihanen, Vice President, R&D, Surface Drilling Division, Sandvik Mining and Rock Solutions, told IM at the Sandvik Capital Markets Day event last week: “The main benefit of this battery-electric solution is the ability to tram independently for up to seven hours.

“When you need to move the rig after drilling a certain portion of the pit ahead of blasting, you can disconnect the cable and tram the rig away from the pit independently without worrying about managing the cable logistics. Then, when you have carried out the blasting and explosives loading process and are ready for the next drilling sequence, you can tram back without recharging in between.”

Petri Virrankoski, President of the Surface Drilling Division, added: “The application where these drills are used is somewhat different to rotary drills. To a degree, they are used in production drilling, but in a very dynamic way – carrying out pre-splits or blasthole patterns on smaller benches, for example.

“They need to manoeuvre around more, so there are more demands placed on them from a flexibility and cable management perspective.”

There are other potential benefits Laihanen talks up – the ability to carry on drilling or tramming during “black outs” and, on mine sites where cable-electric equipment is already used, connect the rig to the grid after diesel-electric blasthole drills and cable shovels have started up (to avoid power surges).

“For some of our frontrunner customers that have already adopted electrification on surface and have the infrastructure in place, they would only need to add one transformer to lower the voltage level from what their larger pieces of equipment are working off to start using this rig for drilling and tramming,” he added.

This type of talk – more practical than conceptual – is representative of Sandvik ‘making the shift’ when it comes to electrification in surface mining.

It has only been just over a year since the company unveiled its first electric concept rig, based off a much smaller top hammer drill rig meant for urban construction, but the understanding of what it may take to electrify these large rigs has grown tremendously.

“From a technology development and demonstration point of view, it is crucial to understand the framework that you have from the lower and upper end of the drilling portfolio,” Laihanen said. “This helps you track it with the customer base and finalise your productisation plan to hit that 2030 goal of having an electrified offering for the whole range.”

Eriksson says the company is confident in being able to offer electric surface drilling products across its range by 2030, with Sandvik’s continued advances in underground mine electrification spurring this on.

It is worth, therefore, noting some of the numbers that came out of the Capital Markets Day from the underground load and haul division.

Brian Huff, Vice President of New Technologies for the Load and Haul Division within Sandvik Mining and Rock Solutions, said the company had won more than 75% of the tenders it had been involved in from January-October this year, with more than 15% of the company’s load and haul order intake over this period representing battery-electric equipment.

One can also add sales of the company’s underground battery-electric drills, which started to be offered to the market from 2016, to these numbers.

The company’s Test Mine in Tampere, which IM visited last week, has played a key role in this growing Sandvik underground battery-electric population, and the recent announcement that Sandvik will look to replicate this on surface with the Sandvik Test Pit – some 40 km away – is another indicator of how serious the company is about becoming an open-pit drilling major.

Virrankoski explained: “If you look at the peak capabilities that have enabled us the successes underground, one of these is the Test Mine. This has been helpful for testing and developing not only the drill rigs, but also tooling, digital tools, automation, rock drills, etc.

“It became pretty clear about four years ago that we needed a similar capability for surface.”

This location just outside of Tampere was chosen due to the “good rock” availability, the ability to offer significant scale where the company could test out all boom and rotary drill rigs up to the DR413 class at the same time as providing customer showcases both on electrification and automation, the ability to cross-fertilise underground learnings from the existing Test Mine with surface drilling developments, and the continued development of existing and new Sandvik surface mining engineers.

The Sandvik Test Pit, which has previously served as a quarry, will be developed by its own drilling plan

The company already has multiple rigs, both boom and rotary, at the site – which is still being setup for testing – with the new electric concept rig expected to soon join it.

“The next action after that is to begin customer trials next year,” Laihanen said. “We have had preliminary discussions with several customers, but we need to finalise our own internal development testing before locking in these trials.”

This is indicative of the emphasis the company is placing on surface mining and the opportunity it has to shape the battery-electric conversation in the surface drilling space.

“For us, it is important to have a physical specimen to have these conversations with customers,” Laihanen said. “When you have something available, it makes the conversation around capabilities and limitations a lot easier, taking these discussions to a whole new level.”

Virrankoski added: “This will lead to a conversation around maintenance processes, the skills requirements, the service models, etc.

“Having a machine that can play in a real-life sandbox is very different to showing a model on a screen.”

Sandvik has laid its surface drilling marker down. The market will now decide if this is the direction it wants to move in.

Bortana-South32

South32 embarking on battery-electric vehicle trials at Cannington

South32’s greenhouse gas emission (GHG) reduction plans were established early on in the company’s life, with a long-term goal of achieving net zero operational GHG emissions by 2050 set in motion within a year of it coming into being.

It has since established a medium-term target to halve its operational GHG emissions by 2035, from its 2021 financial year baseline, with several initiatives already in play to achieve this aim.

The company’s approach to climate change is focused on:

  • Reshaping its portfolio to the base metals deemed critical in the transition to a low-carbon world;
  • Decarbonising its operations, with a focus on the four operations within its portfolio which account for the majority (93%) of its emissions profile (Hillside Aluminium, Mozal Aluminium, Worsley Alumina and Illawarra Metallurgical Coal (IMC));
  • Understanding and responding to the potential physical impacts of climate change on its business to build operational resilience; and
  • Working with others to innovate and address shared challenges across industry, and to decarbonise the value chain.

The company has made headway on all four of these objectives since settling on this focus.

The portfolio reshaping is coming good with advancements in base metal projects and an acquisition of a significant stake in the Sierra Gorda operating mine in Chile.

In its 2023 financial year, the company commenced conversion of its first coal-fired boiler to natural gas as a transitional step at Worsley Alumina, with an estimated abatement of up to 205,000 t/y of CO2-e; converted 18% of pots at Hillside Aluminium to AP3XLE energy efficient technology and completed four of five EnPot trials; and commenced detailed design and execution planning for a commercial scale trial of CSIRO ventilation air methane mitigator technology at IMC.

And, when it comes to working with others to innovate and address shared challenges across industry, South32 can point to work it is carrying out under the auspices of the Electric Mine Consortium (EMC) – a group of companies aiming to accelerate progress towards a fully electrified, zero carbon, zero particulates mine.

As the lead in both the electrical infrastructure workstream, and energy supply and storage workstream within the consortium, South32 has agreed to take significant steps on behalf of the industry.

On the latter workstream, it recently scanned the market for long duration energy storage through an expression of interest, which received submissions from over 20 vendors, targeting seven members’ use cases.

“The knowledge gained informed a pre-concept study of thermal energy storage at Worsley Alumina and a related steam electrification study,” South32 said in its most recent Sustainable Development Report.

And, when it comes to the former, the company intends to build on its experience trialling the Cat R2900 XE diesel-electric loader at the Cannington operation in Queensland, with plans to trial three battery-electric light utility vehicles and a battery-electric integrated tool carrier, also at Cannington.

These trials, expected to run for at least 12 months and to prove the use case of electric vehicles for underground mining – including safety, reliability, range and capability requirements – will see three Bortana light utility vehicles deployed, two of which have been configured for heavy duties and one configured as a supervisory vehicle; with a Batt Mobile Equipment (BME) BIT120 integrated tool carrier also being put through its paces.

The Bortana EV is a battery-electric vehicle designed to handle the dynamic operating environment of underground mines. Designed and developed in Australia, it uses the chassis of a diesel-powered Agrale Marruá, electric technology from 3ME and Safescape’s design and engineering expertise. It is designed to tackle safety and health concerns by reducing emissions, heat and maintenance.

The BIT120, meanwhile, is BME’s second generation 20-t Integrated Tool Carrier, which combines an optimal production loader based on a Volvo L120F platform that has been converted to operate with zero diesel emissions, minimal noise, reduced vibrations and low heat output.

Charging infrastructure for all four pieces of equipment has already been installed at Cannington, and there are expectations the learnings from these trials will be factored into the plans at the Hermosa project in Arizona, USA – a project the company has already mooted could use battery-electric underground equipment.

Alongside this work, South32 continues to fund ongoing developments with BluVein1, a system that allows concurrent dynamic powering and charging of electric vehicles suited to the small-scale underground truck configurations, providing an alternative to static charging or fast charging technology.

Ivanhoe Electric planning for all-electric underground fleet and Railveyor tech at Santa Cruz copper project

Ivanhoe Electric has published the results of an Initial Assessment (IA) carried out on its Santa Cruz copper project, in Arizona, USA, highlighting the potential to build a 5.9 Mt/y underground mining operation that uses an all-electric underground heavy mining fleet, in combination with Railveyor technology for material movement.

The use of an all-electric underground heavy equipment fleet alone represents an estimated 70-80% reduction in Scope 1 emissions when compared to a traditional high-efficiency diesel-powered heavy equipment fleet, Ivanhoe says, adding thatthe use of Railveyor technology would further the efficiencies associated with moving mined mineralisation from underground to surface.

The IA base case assumes 70% of the total electric power requirements for the project will be generated by on-site renewable infrastructure, enabling copper production with very low carbon dioxide equivalent (CO2e) emissions of 0.49 t of CO2e per tonne of copper for Scope 1 and 2 emissions. This compares favourably with a global mining industry average of approximately 3.9 t of CO2e per tonne of copper equivalent, Ivanhoe says. The subsequent prefeasibility study for the project will evaluate the potential use of combined solar power, battery storage and a geothermal-driven microgrid as renewable power sources to provide up to 100% of the electricity requirements for the project.

The Santa Cruz IA outlines a potential 5.9 Mt/y underground mining operation, supported by 105.2 Mt of modelled mill feed with an average grade of 1.58% Cu from the Santa Cruz and East Ridge Deposits, resulting in an estimated 20-year mine life.

The IA focuses exclusively on the high-grade exotic, oxide and enriched domains of the Santa Cruz and East Ridge Deposits, with the oxide and enriched domains of the Texaco deposit not included in the current study (2.7 Mt indicated grading 1.42% total copper and 27.3 Mt inferred grading 1.39% total copper, using a 0.80% cut-off grade).

Future studies could evaluate the potential addition of the large primary sulphide domains at Santa Cruz (76.2 Mt indicated grading 0.88% total copper and 8 Mt inferred grading 0.92% total copper, using a 0.70% cut-off grade) and at the Texaco Deposit (900,000 t indicated grading 1.05% total copper and 35 Mt inferred grading 1.06% total copper, using a 0.80% cut-off grade), subject to market conditions.

Copper recoveries of 95.4% are expected to be achieved through a combination of solvent extraction and electrowinning and conventional froth flotation. The IA includes life of mine production for the project of 1 Mt of copper in the form of 99.99% pure copper cathode and 600,000 t of copper contained in a 48% copper concentrate with very low deleterious elements, such as arsenic or lead.

The IA contemplates initial project capital expenditures of $1.15 billion, and life of mine sustaining capital expenditures totaling $0.98 billion. A three-year construction period is envisioned to develop the underground workings and build the surface processing facilities.

As a result of the small surface footprint required for underground copper mining activities included in the IA, the total land area expected to be required for the mine, plant, tailings storage facilities and potential on-site generation of renewable solar power covers approximately one-third of the total land package.

The IA also contemplates placing 50% of the mine tailings back underground as cemented paste fill. The remaining 50% will be stored on the surface as thickened tailings at 65% solid content. Surface tailings will be contained within a ring dyke dam with a capacity to store 56.7 Mt. Water management associated with tailings storage is minimised as a result of thickened tailings and high evaporation rates in the Sonoran Desert, the company says.

Executive Chairman, Robert Friedland, said: “Completing the Initial Assessment for our Santa Cruz copper project is an important achievement for Ivanhoe Electric as we work to advance a new source of responsibly produced ‘green’ copper in the United States. Our goal is to develop a modern copper mine that produces copper with among the lowest levels of carbon dioxide output in the industry; a product we think has the potential to attract a premium price in the future.

“Using primarily on-site renewable electricity generation, and with the potential to increase that to meet the project’s entire future needs, the IA shows us that we are on the right track to achieving our goal at Santa Cruz and our larger goal of enhancing US supply chain independence for critical metals. We are excited about the future for our Santa Cruz project in Arizona.”

In the IA, twin declines, each measuring 4.3 km, would be developed to access the upper parts of the Santa Cruz and East Ridge deposits. One decline is required for air intake and access, while the other will be required for air exhaust and material movement. To develop the declines, the IA assumes that construction of the portal box cut would begin in 2026, decline development in 2027 and continues through 2028 to access the top portion of the mine. Under these assumptions, stoping activities would begin in 2029 with a one-year ramp up to the full 15,000 t/d capacity.

Mining of the upper portion would proceed for the first eight years before additional capital expenditures are required to extend the declines by 1.9 km. Additional surface infrastructure would be required once mining of the lower portion commences. This would include the second phase construction of a refrigeration plant, ventilation, water handling and material handling.

Mine sequencing would employ typical transverse longhole stopes for the Santa Cruz deposit on a primary-secondary sequence with paste backfill for support. Mining of the Santa Cruz exotic mineralisation has been evaluated using a drift and fill technique with access from the Santa Cruz longhole stoping levels. The East Ridge deposit will apply a drift and fill mining technique with access directly from the twin declines.

Over the total life of mine, 105.2 Mt of mineralised material is expected to be mined. This includes 88.6 Mt from the Santa Cruz deposit, 1.9 Mt from the Santa Cruz exotic mineralisation, 9.8 Mt from the East Ridge deposit and 4.9 Mt of low-grade material required to access the deposits.

Newcrest plans for ZERO Automotive, MacLean ML5 battery-electric trials at Cadia

Having committed to and benefitted from the use of battery-electric haulage at its Brucejack underground mine in Canada, Newcrest Mining is now looking into equipment electrification options at its Cadia underground mine in Australia.

In its recently published annual report, the company confirmed it was planning for electric vehicle trials at the mine in New South Wales. This follows the deployment of a fleet of Sandvik Z50 battery-electric trucks at Brucejack, along with a trial of Sandvik’s LH518B battery-electric loader.

Newcrest, which is currently the subject of a friendly takeover from Newmont Mining, continued to progress its “Net Zero by 2050” goal during its financial year to June 30, 2023, with the scoping and planning of key trials and studies to implement the Group Net Zero Emissions Roadmap continuing.

A company spokesperson confirmed to IM that its plans at Cadia – a block cave operation that is currently being expanded – could see a ZERO Automotive battery-electric light utility vehicle deployed for trials in its current financial year. This comes alongside plans to test out MacLean’s battery electric ML5 Multi-Lift, also in FY2024.

ZERO Automotive has made inroads into the Australian underground mining space, deploying vehicles at multiple OZ Minerals (now BHP) sites, in addition to bringing an ultra-safe ZED70 Ti battery-electric converted utility vehicle, using LTO battery technology, to IGO’s Nova project in Western Australia.

MacLean’s ML5, meanwhile, is the newest addition to the company’s utility vehicle product line, initially designed as a safe and purpose-built alternative to the use of integrated tool carriers in underground operations across Australia. This specific application context – mine services installation and repair work from a certified elevated work platform with a 6.5-m working height and a 4.5-t payload – was the foundation of the ML5’s engineered design for safety, productivity and versatility.

Newcrest’s plans to incorporate more electric equipment into its operating fleet have – most likely – been influenced by the impressive results the company has seen at Brucejack, with the battery-electric trucks expected to improve truck productivity, lower unit costs and abate approximately 65,000 tonnes of CO2 emissions through to 2030.

Record Rokion battery-electric vehicle order set for Torex Gold’s Media Luna

Torex Gold’s Media Luna project in Mexico has been behind a surge of battery-electric vehicle contract activity of late, with the latest recipient being Saskatoon-based Rokion.

The gold mining company has ordered a 28-strong fleet of BEVs from Rokion, set to start being delivered at the back end of the year.

These vehicles will be crucial in providing zero emission and effective personnel transport and production support functions at the project, which is set to extend the life of mine of its El Limón Guajes (ELG) Complex through at least 2033.

Media Luna is located 7 km south of the existing ELG Complex comprised of the El Limón, Guajes and El Limón Sur open pits, El Limón Guajes underground mine, plus the processing plant and related infrastructure. It is an underground deposit primarily containing gold, copper and silver mineralisation, separated from the ELG Complex by the Balsas River.

The underground mine is designed for an average production capacity of 7,500 t/d, predominately using a mining method of longhole stoping with paste backfill, supplemented by mechanised cut and fill stoping where appropriate. It will be a fully mechanised operation with the primary access to the mine via the Guajes Tunnel, which, itself, will have a length of approximately 6.5 km, creating an underground connection between the ELG Complex and the Media Luna mine. The ELG site will continue to serve as the base of mine operations, with all production levels accessible from the internal mine ramp.

Torex expects to bring Media Luna into commercial production in early 2025, ramping up to 7,500 t/d by 2027 and creating one of Mexico’s largest underground mines. It contains reserves of approximately 2.1 Moz gold, 18.9 Moz silver and 444 Mlb copper.

As of March 31, 2023, physical progress on the project was approximately 24%, according to Torex, with detailed engineering, procurement activities, underground development and surface construction advancing. The project continued to track to overall schedule and budget, the company noted.

Equipment deliveries will be key in advancing the project in line with the schedule and, earlier this year, both Sandvik Mining and Rock Solutions and MacLean announced sizeable equipment orders – both battery- and diesel-powered – related to the mine’s development and production phases.

Now, IM can reveal that Torex has also sealed an agreement with Rokion.

Rokion are to supply 27 of its battery-powered utility trucks to the operation along with one R700 forklift – the latter representing the company’s first order for a battery-powered forklift.

According to Rokion, these trucks can navigate mine sites with 20% grade at a full gross vehicle weight and full speed while traveling more than 70 km per charge. This is more than enough to get through a full shift without charging. And, while availability is a key selling point, Rokion says its battery-powered vehicles have been designed for simple and easy maintenance. The modularity of the components are “ideal for remote mining locations where the priority is to have dedicated service personnel with expertise in production mining equipment”.

When it comes to vehicle specifics, Rokion outlined that Torex would receive 10 R200 battery-powered trucks – configured to carry up to five passengers – two R200 trucks set up as two-passenger surveyor utility vehicles, two R200 two-person “6×6 Surveyor” utility vehicles and four R200 two-person “6×6 Electrician” utility vehicles. This would be complemented by seven R400 vehicles fitted out to carry 12 passengers – which have four-wheel steering to greatly improve manouevrability, according to Rokion – and two R400s equipped for three passengers able to carry out mechanic duties.

The Rokion order from Torex for Media Luna includes 16 of the company’s R200 battery-electric vehicles

Gertjan Bekkers, Vice-President, Mines Technical Services with Torex, said: “Our light-vehicle fleet will be used to drive fairly significant distances between our work sites on every shift, so the flexibility and range of these vehicles were key considerations for Torex during the procurement phase. The tunnel connecting Media Luna with ELG is like our horizontal shaft, connecting to the internal ramp of the Media Luna mine. Of course, we’ve also carefully considered equipment reliability and we were particularly impressed by the enhancements that Rokion has made to their portfolio since entering the underground hard-rock mining market.”

Kipp Sakundiak, CEO of Rokion, said the two companies have struck up a very important partnership over the last year or so when the engagement began.

“After getting to know the team at Torex, we are excited about the opportunities,” he told IM. “It is a good thing when you have a vendor-supplier relationship whereby both companies share similar values.”

Deliveries of the vehicles will start in October, with the full fleet set to be in place in 2025, according to Sakundiak.

Epiroc’s Erik Svedlund: ‘the answer…is always electrification’

Not a financial report goes by without Epiroc referencing its electrification offering. Whether it be new products, an uptick in customer demand or plans to roll out more battery-electric retrofit options for its customer base, ‘going electric’ has become a consistent quarterly theme for the Sweden-based OEM.

Epiroc’s development timeline for battery-electric machines started all the way back in 2012 – the first Scooptram ST7 Battery was produced in 2013 before a 2014 machine trial with Goldcorp’s Red Lake mines department (now owned by Evolution Mining). The Minetruck MT2010 battery-electric vehicle then came along in 2015.

Its electrification roots go back even further though thanks to Atlas Copco’s acquisition of GIA Industri AB in 2011; a transaction that brought the renowned Kiruna electric trucks into the portfolio.

Over this timeframe, Epiroc has also deployed cable-electric large blasthole rigs across the globe, removing diesel from the drilling process at surface mines.

A constant throughout this period has been Erik Svedlund, Senior Zero Emission Manager at Epiroc, who has helped steer the company’s electrification direction from its first generation battery-electric vehicles to the position it is in now: having integrated automation into the battery-electric mix with the Scooptram ST18 SG and, on the retrofit side, having the resources in place to offer mid-life rebuild options to convert its diesel-powered Scooptram ST7, Scooptram ST1030 and Scooptram ST14 loaders, plus its Minetruck MT436 and Minetruck MT42 trucks, to battery-electric vehicles.

Ahead of his keynote presentation at this month’s The Electric Mine 2023 conference in Tucson, Arizona (May 23-25), IM put some questions to Svedlund on the evolution of the market since he started ‘selling’ the electrification concept to stakeholders.

IM: You have been heading up Epiroc’s electrification efforts since 2010; how have you seen the reception to these solutions and developments change in that 13-year period? Has the speed of the transition surprised you?

ES: The speed is both fast and slow; I estimate that we are in the beginning of the steep part of the S-curve. Previously the drive was more on improved safety and health or a lower total cost of ownership. Now I notice a bigger drive towards low-carbon solutions. But the answer to all these focus areas is always ‘electrification’.

IM: Epiroc has some very ambitious targets when it comes to electrifying its fleet – both underground and on surface with drills. Given the various applications you are serving, how are you able to create a platform that can cater to all the specific parameters at mining operations?

ES: Indeed, Epiroc was quite early in developing battery-electric machines and has set very ambitious sustainability targets that go hand in hand with our customer’s targets. Making one or a few models is not too difficult but enabling everything to go electric required us to develop a new technology platform that would allow all models to become electric. This platform has allowed us to scale up to meet our targets.

IM: Is this why you are pursuing so many different development avenues with customers – diesel-electric trucks, battery-trolley, new battery solutions, BEV retrofits, etc?

ES: There is no one silver bullet to solve all models and applications. As a base there will be an energy-efficient electric driveline. However, how to get energy to that machine will vary depending on application. We will need many solutions in the future.

Erik Svedlund, Senior Zero Emission Manager at Epiroc

IM: How important do you see Batteries as a Service (BaaS) being as your BEV rollout accelerates? What level of interest or uptake have you had so far, and do you see the majority of BEV fleet users opting for this?

ES: The majority of our batteries go out with BaaS but not all; some customers like to own their assets. The setup of these agreements may be tailored to the customer’s needs.

IM: The combination of automation and electrification have been spoken about in the last few years as BEVs have started to be rolled out at a faster pace, with the development of your ST14 SG and ST18 SG representing key milestones in this area. Are mining companies continuing to push you to further automate your BEVs and remove all people from the process? What avenues are you pursuing for this in terms of automating the battery swapping process, recommending trolley charging, leveraging BluVein’s dynamic charging solution, etc?

ES: The trend for safer and more efficient operations will continue. Autonomous machines will have to be supported by autonomous chargers. Dynamic or stationary charging will be dependent on the type of machine and application. But we must not forget the solutions we as OEMs introduce must be able to work together with the grid. When it comes to surface mining, we have already seen that automation and electrification are a perfect match. We already have a complete range of cable-electric large blasthole rigs with a large number of drills in operation in all continents, some of which are automated.

IM: Your keynote presentation is titled, ‘The green transition is a material transition.’ Could you explain what is meant by this, and how Epiroc is involved in this material transition as a mining OEM?

ES: Zero-emission vehicles and renewable energy require metals; we in the mining industry have a special responsibility to do our part. Adopting a ‘green mining’ concept will prepare and position our industry as adding value to our solutions.

Erik Svedlund, Senior Zero Emission Manager at Epiroc, will present: ‘Keynote: The green transition is a material transition’ at The Electric Mine 2023 conference in Tucson, Arizona, on May 24 at 9:00-9:30. For more information on this three-day event, head to www.theelectricmine.com

ABB and Perenti to collaborate on mining electrification projects

Perenti has signed an agreement with ABB to collaborate and explore approaches to support net-zero emissions targets for underground and open-pit mines.

Experts from the two companies will work together to address electrification in mine hauling operations, power distribution, energy efficiency and power management, the companies said.

Australia-based Perenti has mining expertise and technical capability, which complements ABB’s technology expertise. Together, the teams plan to explore business models and solutions to provide wider services for pilot, brownfield and greenfield mining customer projects to support the electrification of operations.

ABB has been calling for open collaboration within the mining industry and has taken action on several similar initial non-binding agreements to build commitments with original equipment manufacturers (OEMs), technology innovators and mining companies. This includes pacts with FLSmidth, Amazon Web Services, MEDATech, Liebherr and others.

“Mining customers are committed to facing environmental, societal and economic challenges head on as they aim to decarbonise mining operations,” Joachim Braun, Division President, Process Industries, ABB, said. “With ABB’s sector leading position in electric mine technology development, and Perenti’s excellence and experience in mine development and mine operations, the scope of this collaboration is a perfect opportunity to make real progress in providing electric solutions that will decarbonise the industry.”

Mark Norwell, Managing Director and CEO, Perenti, said: “ABB and Perenti share a vision to develop energy-efficient solutions for the mining industry. By combining our experience across mining operations and digital solutions with ABB’s leading technologies we are focused on supporting the decarbonisation of mining through electrification. We look forward to working with ABB on this exciting new venture.”

ABB launched its ABB Ability™ eMine portfolio of technologies and methodologies last year, an approach to make the all-electric mine possible, with fully integrated electrification and digital systems from mine to port.

Perenti says it is committed to acting on climate change through promoting innovation, developing and deploying low emissions technology and working with its clients to implement projects that improve energy efficiency and reduce emissions.

Boliden’s trolley journey continues to evolve with Kevitsa line launch

In its latest move to become the most climate friendly and respected metal provider in the world, Boliden has opened the trolley line at its Kevitsa mine in Finland.

The line, which encompasses a 1.3-km-long track, now has three Komatsu 227 t 830E-5 trucks running on it, according to Stefan Romedahl, President Business Area Mines, Boliden. “The following 10 trucks will be converted in the spring of 2023 when the in-pit trolley line will be commissioned,” he told IM.

This project aims to cut the mine’s carbon dioxide emissions, with estimates the volume of CO2 emitted could reduce by 9% over mine’s lifetime using this electrical infrastructure.

Boliden is not new to trolley operations. It started testing trucks on the Kevitsa line late last year, while its Aitik copper mine in northern Sweden ran electric-drive trucks on trolley as far back as 2018.

Following a two-year trolley assist pilot project on a 700-m-long line at Aitik – which saw Eitech and ABB supply electrical infrastructure; Pon Equipment and Caterpillar carry out truck modifications; and Chalmers University provide supporting research on system aspects of the electrification – the company, in late-2019, decided to further invest in trolley operations at Aitik. This was announced at the same time as the Kevitsa trolley plans.

Romedahl confirmed there are now 14 Caterpillar 313 t 795F ACs trucks running on a 1.7-km-long trolley line at Aitik, which will be extended as the depth of the mine increases.

Stefan Romedahl, President Business Area Mines, Boliden

While all the trucks at these two operations use diesel-powered propulsion after they come off the trolley infrastructure, Romedahl said the plan was to convert them to ‘zero emission’ solutions in the future, with a battery-trolley setup under consideration.

“Yes, this is the long-term strategy,” he said. “Boliden is working closely with our suppliers to achieve this in the upcoming years.”

With the world requiring many more mines to electrify industry, Romedahl was hopeful more of these would move towards fossil-free operation.

“At Boliden we have the vision to be the most climate friendly and respected metal provider in the world,” he said. “That is not something you can have as a vision without doing quite a lot in the field of sustainable company development. The trolley lines are one of many activities we do to reach that vision.

“For Boliden, it is crucial to perform in the direction of fossil freeness as soon as possible. The green transition can’t happen in 10 years; it needs to happen now.”

Sandvik adds Turku plant to battery-electric vehicle manufacturing plan

Sandvik is expanding its plant in Turku, Finland, to incorporate the manufacture of battery-electric vehicles (BEVs) for underground mining, it says.

Alongside the expansion, which is set to be completed in the second half of 2023, the whole of the plant for load and haul equipment is set to be enhanced and modernised.

Sandvik’s Turku Business Park project represents a significant investment of over €10 million ($9.7 million), with the investment in response to increasing demand for load and haul equipment for underground mining, together with the industry’s growing trend towards electrification and digitalisation.

The objective is to increase the capacity of Sandvik’s Turku plant and improve production efficiency. Improvements will be made to all aspects of the plant’s operations, including logistics, warehousing, production and assembly areas and quality control, Sandvik said.

The OEM will acquire an additional 7,000 sq.m of production and storage space by modifying space previously occupied by Tunturi, a manufacturer of bicycles and fitness equipment. The project will provide additional capacity for the production of BEV loaders and trucks, and includes investment in new welding robots and assembly lines.

Matti Seppälä, Project Manager at Sandvik Mining and Rock Solutions, said: “The upgraded production environment and reorganisation of operations will improve productivity, lead times and worker safety. Warehouse and recycling improvements will enhance the sustainability of our operations.”

Three completely new machine assembly lines will be built, two of which will be designated for the manufacture of BEVs – a first for the Turku plant, which has manufactured mining loaders and trucks since the early 1980s and employs around 700 people today.

The modifications that form part of the Turku Business Park project will enable flexible manufacturing of both conventional diesel and battery-electric mining equipment. The company’s plant in Camarillo, California, is currently the company’s main battery system hub for BEVs.

Mats Eriksson, President of Sandvik Mining and Rock Solutions’ Load and Haul division, added: “BEVs enable the electrification of mines, which increases productivity and improves working conditions, reducing emissions, heat and noise, although there will still remain a need for conventional diesel equipment for some time to come.”

To strengthen its development of mining BEVs, Sandvik recently acquired Akkurate, which specialises in battery technology, particularly remote battery diagnostic and prognostic platforms. Akkurate has now been integrated into Sandvik’s Load and Haul division, accelerating its expansion into battery-electric mining equipment and enhancing the current product offering.