Tag Archives: mineral processing

Kwatani large vibrating screen customisation pays off

Process plant designers often underestimate the movement of large vibrating screens when these machines start and stop, a challenge for which Kwatani says it has found an innovative and cost effective solution.

According to Kwatani’s Chief Operating Officer, Kenny Mayhew-Ridgers, the company has achieved considerable improvements in many screening applications by selectively fitting torsional springs alongside coil springs.

“It is well known that the vibrating motion of a screen impacts on the building and structural accessories around it,” Mayhew-Ridgers says. “This vibration is addressed by fitting isolators between the screen and the plant floor, and by constructing the plant building to certain minimum structural specifications.”

However, the focus is often on the frequencies that the screen generates in its steady-state phase – or the normal running phase – rather than during the transient phases when the screen is starting up or slowing down to a stop, Kwatni says.

Mayhew-Ridgers highlights that it is during these transient phases that the screen’s movement becomes amplified and potentially most destructive. Isolators between the screen and the floor – common among which are coil springs and rubber buffers – are meant to absorb vibrations and prevent damage to surrounding infrastructure. However, the transient phases, especially when stopping, can generate considerable sideways movement of the screen, which must be avoided.

“Traditional isolators like coil springs usually perform well in controlling the up-and-down movement of the screen,” he says. “Our experience is that the sideways movement, which is induced most strongly when the machine stops, can be better controlled by torsional springs.”

However, he notes that coil springs retain the advantages of being cost effective and providing a good linear isolation of the screen from the building structure. In this respect, their isolation characteristics are generally better than rubber buffers which excel in terms of their damping qualities.

“The torsional spring provides the best of both worlds, giving a good linear range for compression during operation while also becoming non-linear like the rubber buffer during stopping,” Mayhew-Ridgers says.

Using its experience observing screens operating in the field, Kwatani has developed and trialled various solutions in its dedicated testing centre at its headquarters in Kempton Park, South Africa. By optimising the best combination of coil springs and torsional springs, the company says it has succeeded in achieving the best results for customers.

“It’s not that torsional springs are better than coil springs,” Mayhew-Ridgers says. “It is about finding the right combination – through intensive testing and adaptation – for the customer’s particular requirements; we have both the expertise and the equipment to do this.”

Weir Minerals and Andritz expand tailings processing collaboration with IsoDry

Weir Minerals and Andritz have signed an agreement at MINExpo 2021 expanding their shared commitment and strategic cooperation to supply equipment for processing tailings in the mining industry.

The foundations of this agreement have been built on a shared understanding and vision to enable the sustainable and efficient delivery of the natural resources essential to create a better future for the world, they say.

Since 2018, Weir Minerals’ and Andritz’s partnership has seen them collaborate on joint tailings projects. This shared history as partners has reinforced their abiding belief that, together, both Weir Minerals and Andritz are stronger, they said.

This shared success has led both Weir Minerals and Andritz to renew their ongoing commitment and announce they’ll be expanding their offer to all regions around the globe.

Using Andritz’s proven separation and dewatering technologies, Weir Minerals says it has strengthened its whole-of-mine capabilities, showcasing market-leading products from extraction to comminution, mill circuit and tailings management.

“Weir Minerals has been providing tailings solutions for decades; we have dedicated research facilities – the Weir Technical Centre in Melbourne, Australia, and the Sustainable Mining Centre in Venlo, Netherlands – that are challenging conventional ways of thinking about tailings, while also developing practical, innovative and sustainable solutions that will reduce operating costs and improve safety,” Ricardo Garib, Weir Minerals Division President, said.

“Decreasing ore grades mean that mines are producing more tailings than ever before. One of the challenges with tailings management is that there cannot be a one-size-fits-all approach; each mine requires a tailored solution that carefully considers the minerals being processed, as well as the site’s climatic and geological conditions. Weir Minerals prides itself on having both the expertise and equipment that allows us to partner with miners everywhere to plan and implement tailings solutions based on their operations’ unique challenges and this agreement with Andritz enhances those capabilities,” he said.

Steve Huff, President Andritz Separation, said: “Andritz has a long history working across a range of different industries. We are very proud of the work we’ve done with Weir Minerals; together, we’re excited about continuing to provide a joint offering of sustainable and value-added tailings solutions. Both companies bring a different expertise and know-how to the partnership; we complement one another and ultimately, it’s our customers who’ll benefit.”

Tailings management forms an important element of Weir Minerals’ broader integrated solutions approach, which considers problems and challenges from all perspective and draws on a range of experts – process engineers, design engineers, product experts and materials scientists, among others – to identify potential challenges and opportunities and provide tailored solutions.

Charlie Stone, Weir Minerals VP Sales and Business Development-Mill Circuit, said: “This latest agreement enhances our overall tailings offering and enables us to provide our customers with a complete tailings solution. Under the brand name IsoDry, we will continue to offer customers a range of mechanical separation technologies, such as thickeners, filter presses, centrifuges, and vacuum belt filters.”

Weir Minerals has strengthened its tailings team to support the market and ensure that it can provide innovative solutions based on each customer’s specific requirements.

The agreement provides the opportunity for potential future collaboration on technology, harnessing Andritz’s separation technology in conjunction with Weir Minerals’ minerals and tailings processing technology. Many of these products – Warman® pumps to transport fluid tailings, GEHO® pumps to handle paste, Cavex® hydrocyclones to dewater tailings and the Multiflo® range of dewatering solutions – have been integral to helping miners manage their waste for generations, they said.

Weir Minerals and Andritz have also reiterated their shared commitment to sustainability; it is an essential part of both their business and corporate strategies. Both companies say they have outlined ambitious plans to reduce their carbon emissions, while their approach to ESG initiatives extends to all aspects of their organisations.

ArcelorMittal to expand iron ore mining and logistics operations in Liberia

The Government of the Republic of Liberia and ArcelorMittal have signed an amendment to the Mineral Development Agreement (MDA) which paves the way for the expansion of the steel major’s mining and logistics operations in Liberia.

With the MDA amendment coming into effect, ArcelorMittal Liberia will significantly ramp up production of premium iron ore, generating significant new jobs and wider economic benefits for Liberia, it said.

The expansion project – which encompasses processing, rail and port facilities – will be one of the largest mining projects in West Africa. The capital required to finalise the project is expected to be approximately $800 million, as it is effectively a brownfield expansion.

The expansion project includes the construction of a new concentration plant and the substantial expansion of mining operations, with the first concentrate expected in late 2023, ramping up to 15 Mt/y. Under the agreement, the company will have reservation for expansion for at least up to 30 Mt/y. Other users may be allowed to invest for additional rail capacity, it said.

As the largest foreign investor in Liberia, ArcelorMittal Liberia says it has invested over $1.7 billion in the country over the past 15 years.

More than 2,000 jobs are expected to be created during the construction phase, with Liberians envisaged to fill the majority of the roles created, the company said.

ArcelorMittal operates a Vocational Training Centre and provides two-year residential certificate training in mechanical and electrical trades. As part of the expansion, ArcelorMittal Liberia has also launched a training and development program for high potential Liberian employees who will gain on the job experience and knowledge in ArcelorMittal Mining operations globally.

The employees will receive advanced training in the fields of mining production and operation optimisation, plant maintenance, planning and execution, plant electrical operation systems and electrical maintenance. Other training areas include plant fitting and heavy-duty mobile equipment maintenance, as well as mine production and operations.

Lakshmi Mittal, Executive Chairman, ArcelorMittal, said: “The expansion of mine, processing, rail and port facilities is the largest iron ore project in West Africa and will draw international attention to Liberia as an attractive country to invest in. The current planned expansion is part of a long-term commitment by ArcelorMittal to Liberia that includes undertaking planning for the further expansion of our iron ore asset to at least 30 Mt per annum.”

Metso Outotec and TOMRA to supply particle ore sorting solutions for mining

Metso Outotec and TOMRA Mining have agreed to continue a non-exclusive cooperation to supply particle ore sorting solutions for the mining and metallurgical industries.

The collaboration expands Metso Outotec’s and TOMRA’s capability to offer leading-edge solutions that help increase the overall value of ore deposits by reaching new levels of energy efficiency and productivity, decreasing costs and extending the life of mining operations, the companies said.

“Separating ore from waste rock as early and as efficiently as possible is essential in minerals processing. The best result can be achieved by combining state-of-the-art crushing systems with advanced ore sorting,” Guillaume Lambert, Vice President, Crushing at Metso Outotec, said. “The combination of Metso Outotec’s crushing know-how and TOMRA’s particle ore sorting expertise is an excellent match, providing substantial benefits to our customers.”

TOMRA’s sensor-based sorting solution has proven itself in the mining sector through many major installations.

It can reduce specific energy consumption by 15%, as well as the amount of water used by three to four cubic meters per tonne of ore, according to the company. This makes it a cost-effective and sustainable solution that can benefit both mining operations and the environment.

Mathilde Robben, Key Account Manager at TOMRA Mining, said: “TOMRA, as an original equipment manufacturer, can add significant value to the process and engineering optimisation of sensor-based sorting inclusive solutions when engaging with our customers within a cooperation agreement framework.”

TOMRA Sorting Solutions and Outotec (prior to merging with Metso) struck a cooperation agreement to supply Outotec-branded sorting solutions for the mining and metallurgical industry all the way back in 2014.

Nouveau Monde Graphite turns to Metso Outotec for key Matawinie processing equipment

Nouveau Monde Graphite has launched civil construction works at its flagship Matawinie graphite mining project in Saint-Michel-des-Saints, Québec, having steadily advanced detailed engineering and engaged in the procurement of key service providers, long-lead equipment and contractors to deliver the project, billed as a “zero-emission mine”, in Québec by the end of 2023.

One of these service providers has been confirmed as Metso Outotec, which has been engaged to supply key mineral processing equipment required for the Matawinie concentrator plant for high-purity graphite flake production.

The agreement with the OEM will support the development of design and integration efficiencies through process equipment chain optimisation objectives, NMG said. It also seeks to promote planning efforts, optimisation of the project cost curve and support the company during the construction, commissioning and operation phases.

“This agreement complements Nouveau Monde’s de-risking strategy and helps ensure a rapid progression of final design elements and construction of the ore processing facility,” the company added.

Following the governmental authorisation of the project in February, Nouveau Monde executed its phased program to initiate preliminary works in March. For the site preparation of the mine industrial platform and the access road connecting the project to the local highway, tree clearing was completed before the nesting season to limit impacts to avifauna.

To protect the environment and the community’s well-being, Nouveau Monde has developed an environmental surveillance and monitoring program to oversee the construction, operation and closure activities of the Matawinie project. Nouveau Monde has hired an environmental coordinator to support construction and environmental monitoring activities on-site and enlisted third-party biologists to conduct inspections for the presence of vulnerable species.

Nouveau Monde is also delivering on its commitment to maximise local opportunities and support service providers by engaging with Atikamekw, local and regional contractors and service providers via dedicated activities related to its construction procurement strategy, the associated business opportunities, as well as health, environment and safety requirements for bidding.

The company has retained mining contractor L Fournier & Fils to build the access road connecting the main Highway 131 to Matawinie’s industrial platform. Works for the 7.8-km access road began in July as part of the company’s 30-month construction and commissioning timeline. Construction of the access road is scheduled to be completed in September 2021 to facilitate subsequent civil works and on-site activities.

Eric Desaulniers, President and CEO of Nouveau Monde, said: “This first milestone kick starts the construction of the Matawinie mine, as we strive to build the high-quality, ethical and sustainable project that can cater to the growing electric vehicle and energy storage markets. We have spent the past months refining our execution plan to carry out engineering, procurement and construction activities safely and with a focus on cost and timeline efficiency. I am confident in the expertise of the technical team that we have assembled, coupled with the support of Tier 1 service providers such as Metso Outotec, L Fournier & Fils and many local contractors, to deliver on our commitments of safety, responsible practices and excellence.”

In the 2018 definitive feasibility study on Matawinie, the mine, scheduled to produce 100,000 t/y of graphite concentrate, was expected to use an electric in-pit mobile crusher and overland conveyor system to feed crushed material to the plant.

Yamana Gold retains electrification path for Wasamac in new study

Yamana Gold has reiterated a plan to minimise the amount of carbon emissions generated with the development and operation of the Wasamac gold project in Quebec, Canada, in its first study since acquiring the asset from Monarch Gold.

Monarch, prior to being taken over by Yamana Gold, had laid out plans for an underground mine at Wasamac producing 6,000 t/d, on average, with an expected mine life of 11 years. It expected to use a Rail-Veyor® electrically powered, remote-controlled underground haulage system in addition to an almost entirely electric fleet of production and development equipment.

The December 2018 feasibility study by BBA indicated the Wasamac deposit hosted a measured and indicated mineral resource of 29.86 Mt at an average grade of 2.7 g/t Au, for a total of 2.6 Moz of gold, and proven and probable mineral reserves of 21.46 Mt at an average grade of 2.56 g/t Au, for a total of 1.8 Moz of gold. The study forecast average annual production of 142,000 oz of gold for 11 years at a cash cost of $550/oz.

With drilling, due diligence and further studies, Yamana Gold, in studies forming the new feasibility level studies, has come up with baseline technical and financial aspects of the Wasamac project that, it says, underpin the decision to advance the project to production.

This has resulted in a few changes to the Wasamac plan.

For starters, the company plans to use the extract the now 1.91 Moz of reserves quicker than Monarch’s strategy, with a rapid production ramp-up in the first year followed by sustained gold production of approximately 200,000 oz/y for at least the next four years.

Including the ramp-up phase, average annual production for the first five years of operation is expected to be 184,000 oz, the company said, with life of mine production of 169,000 oz/y. Mill throughput has been increased to 7,000 t/d, on average, but the plant and associated infrastructure were being sized for 7,500 t/d. Production could start up in the December quarter of 2026, the initial capital expense was expected to be $416 million and all-in sustaining costs over the life of mine had been calculated at $828/oz.

The use of a conveyor is still within this plan, but a company spokesperson told IM that Yamana was now considering a conventional belt conveyor rather than the Rail-Veyor system.

Yamana explained: “The optimised materials handling system uses ore passes and haul trucks to transport ore from the production levels to a central underground primary crusher. The haul trucks will be automated to allow haulage to continue between shifts. From the underground crusher, ore will be transported to the crushed-ore stockpile on the surface using a 3-km-long conventional conveyor system in two segments.”

Yamana added: “Using a conveyor rather than diesel trucks to transport ore to surface reduces CO2 emissions by 2,233 t/y, equivalent to taking 500 cars off the road. Over the life of mine, the company expects to reduce CO2 emissions by more than 20,000 t.”

The aim to use electric vehicles wherever possible remains in place.

“The Wasamac underground mine is designed to create a safe working environment and reduce consumption of non-renewable energy through the use of electric and high-efficiency equipment,” the company said. “Yamana has selected electric and battery-electric mobile equipment provided that the equipment is available at the required specifications.

“Battery-electric underground haul trucks are not yet available at the required capacity with autonomous operation, so diesel trucks have been selected in combination with the underground conveyor. However, Yamana continues to collaborate with equipment suppliers with the expectation that the desired battery-electric equipment will be available before Wasamac is in operation.”

In tandem with this, the company plans to use a ventilation on demand solution and high-efficiency fans to reduce its power requirements. This will likely rely on an underground LTE network.

“Heating of the underground mine and surface facilities is designed with the assumption of propane burners, but an opportunity exists to extend the natural gas line to the project site,” it added. “Yamana has initiated discussions with the natural gas supplier and will study this opportunity further as the project advances.”

The site for the processing plant and offices is confined to a small footprint strategically located in a naturally concealed area, and the processing plant has been designed with a low profile to minimise the visual impact as well as minimise noise and dust, according to Yamana.

The primary crusher, previously planned to be located on surface, has been moved underground, with the crushed material transported to surface from the underground mining area using conventional conveyors and stored on surface in a covered stockpile to control dust.

Several design improvements to the previous Wasamac plans have also been made to reduce consumption of fresh water to minimise the effect on watersheds, according to Yamana. Underground mine water will be used in the processing plant, minimising the draw of fresh water and reducing the required size of the mill basin pond.

The Wasamac tailings storage strategy is designed to minimise environmental footprint and mitigate risk, it added.

“Around 39% of tailings will be deposited underground as paste fill and 61% of tailings will be pumped as a slurry to the filter plant located approximately 6 km northwest of the processing plant and then hauled to the nearby dry-stack tailings storage facility,” Yamana said.

Strategic phasing of the tailings storage facility design allows for the same footprint as previously planned, even with the increase in mineral reserves, the company clarified. Also, the progressive reclamation plan for this facility minimises the possibility of dust generation and expedites the return of the landscape to its natural state.

Metso Outotec, Mineral Resources deliver the next generation of crushing

What will crushing plants of the future look like? Mineral Resources Ltd and Metso Outotec have pondered that question and have since gone on to answer it with the delivery of a modular, scalable and relocatable plant at an iron ore operation owned by one of the world’s biggest miners.

Called ‘NextGen II’, the solution represents a ground-breaking approach to delivering safe and reliable production to the hard-rock crushing industry, Mike Grey, Chief Executive of Mining Services for Mineral Resources, says.

And it all started with a test for one of the company’s most technically minded individuals.

“We were sitting around the boardroom table with David De Haas, one of our key engineers on this project, and gave him the challenge to come up with a crushing plant that we could literally relocate anywhere very quickly, build on a very small footprint, and have it plug and play,” Grey told IM in a recent IM Insight Interview.

Mineral Resources, which counts CSI Mining Services (CSI) as a wholly-owned subsidiary, was in a unique position to deliver on this.

A provider of world-class tailored crushing, screening and processing solutions for some of the world’s largest mining companies, CSI specialises in build, own, operate (BOO) projects where it provides both the capital infrastructure and the operational expertise to ensure these crushing plants operate to their potential on site.

It carries out crushing services for Mineral Resources’ own mines, as well others across the mining sector.

Crushing collaboration

When offering such ‘crushing as a service’ type of contracts, the service must be underpinned by the best equipment possible.

Enter Metso Outotec.

Having initially commenced discussions with the global OEM in early 2019 (when it was still Metso), Mineral Resources, later that year, agreed with Metso on the design and delivery of a new type of crushing solution.

The pair recognised early on in these conversations that the industry was changing and they, as service and solution providers, needed to change with it.

The largest bulk commodity operations in the world are made up of multiple pits that get mined over time. As these operations expand, miners are left with a dilemma: extend the haulage time from the pit to the plant or build another plant.

The NextGen II crushing plant has provided a third option.

(Credit: Mineral Resources Ltd)

De Haas, collaborating with Metso Outotec, has delivered on the board’s brief with the design for a crushing plant able to produce 15 Mt/y using a modular design made up of several stations. The plant can move with the mining, being erected and taken down quickly without the type of in-ground services that can scupper such moves.

The first plant delivered under this collaboration is now operating in the Pilbara at a very well-known iron ore operation.

Customised crushing

Guillaume Lambert, Vice President of Crushing for Metso Outotec, provided some specifics.

“The NextGen II is a crushing and screening plant to crush iron ore and produce lump and fine products,” he said in the IM Insight Interview. “The process starts with a primary station made up of a Metso Outotec apron feeder (below left), followed by a vibrating grizzly scalper.” Then starts the size reduction process with a Nordberg C150 jaw crusher (below middle).

From this primary station, the ore goes to three secondary crushing stations, each comprised of an MF3072 banana screen (below right) and Nordberg HP400 cone crusher.

(Credit: Metso Outotec)

Fines and lump are the products from this secondary station, with the oversize arranged in close circuit with the screen, Lambert said.

The screen was designed specifically for the project – offering the compact dimensions that could fit inside the station’s footprint. Other customised add-ons included specialised cooling rooms for the lubrication units and extensive steel fabrication works.

Lambert added: “Really, the tailoring of design is around the modularity of the different stations. Each station is made up of several modules. All those modules can be pre-assembled and tested in a factory and transported by road to the site. This has been established to enable a fast erection process.”

This turned out to be the case with the very first NextGen II installation.

Despite a timeline setback caused by the global pandemic, the 1,500 t of steel needed for the plant construction was built in 16 weeks, starting in March 2020 and ready by July 25 of that year. It was shipped to CSI’s Kwinana facility in Western Australia for pre-assembly before delivery to site.

Final commissioning took place in early 2021, and the crusher has been working well since.

(Credit: Mineral Resources Ltd)

R U OK?

A distinctive blue colour, the plant reflects Mineral Resources’ commitment to mental health awareness and support, carrying the phone number and colour of Lifeline, a Western Australia-based charity formed to prevent suicide, support people in crisis and reduce the stigmas which can be a barrier to seeking help.

“It is really important for us to promote mental health; our fly-in fly-out workforce has matured over some years, but the challenges around working remotely remain,” Grey said. “It is important that we demonstrate we have the support mechanisms in place to support our workers and their families.

“The NextGen II plant is at the forefront of that – it is the first thing people see when they come to work and the last thing they see when going home. They can always reflect and make sure their work mates are OK.”

(Credit: Mineral Resources Ltd)

Support and service

The plant’s operating success has been helped by a local service and support network from both companies, with Metso Outotec providing critical spares and all large “rotable refurbishments” serviced by CSI’s Kwinana facility.

This is underwritten by a remote condition monitoring service that can see personnel and parts from both companies deployed to site at a moment’s notice.

This comprehensive offering has seen close collaboration between Metso Outotec’s Minerals (capital equipment) business, Service business and MRL’s own service team.

Understanding the challenges and potential delays for parts deliveries due to MRL’s remote location, the companies agreed to a specific consignment inventory close to the site to ensure parts availability and exclusivity for MRL to better support the operation.

In addition, a Metso Outotec service expert is present for maintenance and shutdown events to provide expertise and support to the MRL maintenance team.

Grey and Lambert said the collaboration has been a win-win for both companies.

“Working with Metso Outotec on this project has allowed us to define the scope together, rather than remotely,” Grey reflected. “That allows us to ensure we deliver to the timelines and then make any necessary changes on the run, hand-in-hand. We deliver the solution together.”

Lambert added: “Metso Outotec is an indisputable leader in crushing and screening technology, as well as plant. However, working with MRL, we learned a lot about improving the design of our station to maximise safety and improve accessibility in a very, very compact environment for high-capacity plant.”

In demand

This is unlikely to be the first and last next generation crushing plant to come out of the OEM/service provider collaboration.

While iron ore was the commodity of choice for the first installation, Lambert said there was potential for these types of plants featuring in base and precious metal operations.

“The NextGen II plant is very flexible,” he said. “Each station is individually plugged into the solution, and we can easily upgrade the crusher, the screen, etc throughout the year depending on capacity needs.”

Adding or removing some stations could see the throughput reduced or increased, with Lambert even talking about the ability to construct a 30 Mt/y plant that can be built, erected and relocated in the same way as the first 15 Mt/y plant.

“In addition, NextGen II, today, is designed for iron ore applications with lump and fine products,” he said. “If we want, we can add a tertiary crushing stage in order to produce only fines for iron ore. This can match with copper and gold operations also.”

There are plenty of gold miners extracting ore from multiple pits that could provide a strong business case for the installation of such a plant. Similarly, there is potential for this working at major open-pit copper mines.

Lambert concluded: “There is, for sure, global demand for modular crushing plants. Today, having a fast and safe erection process is a must in many countries and locations. In addition, we have more and more short-term operations emerging in very remote locations, so having the possibility to minimise civil works is key for a lot of our customers.”

To watch the full IM Insight Interview on ‘Mining’s next generation of crushing solutions’, click here.

Weir-backed report highlights decarbonisation opportunities in mineral processing

An independent report, commissioned by the Weir Group, has highlighted the global mining industry’s energy usage, illuminating where energy is consumed and linking it with opportunities and pathways for sector-wide decarbonisation.

The report analyses mine energy use from over 40 published studies, centred on five commodities – copper, gold, iron ore, nickel and lithium. For these five metals, it finds comminution – the crushing and grinding of rocks – alone accounts for 25% of final energy consumption at an ‘average’ mine site. Extended across all hard-rock mining, this is equivalent to up to 1% of total final energy consumption globally.

The report reconfirms comminution as a key target for energy and emissions reduction efforts.

These findings align with the mission of the Coalition for Energy Efficient Comminution (CEEC), a global initiative to accelerate eco-efficient minerals, with a focus on energy-efficient comminution. It also extends on previous CEEC messaging, indicating up to 3% of global electrical energy is used in comminution when considering all mined commodities, quarrying and cement production.

In addition to optimising comminution, the report also highlights other energy and emissions reduction opportunities such as the redesign of grinding circuits at greenfield sites, improved drill and blast approaches, pre-concentration, and the use of artificial intelligence and machine learning to improve decision making.

The report emphasises the mining industry’s crucial role in supporting the transition to net zero emissions, needed to limit global temperatures in line with the Paris Agreement, CEEC says. This includes more efficient and sustainable technologies if the industry is to meet the challenge of decarbonisation.

“Despite the scale of the challenge, the report underlines that small improvements in existing mines can lead to large savings in both energy consumption and greenhouse gas (GHG) emissions,” CEEC said.

Report author, Marc Allen, states a 5% incremental improvement in energy efficiency across comminution could result in greenhouse gas emission reductions of more than 30 Mt of CO2e.

Allen said: “A relatively modest 5% improvement in comminution across the industry may result in emissions reductions close to the total emissions for New Zealand (35 Mt CO2e).

“A more robust energy audit process and implementation of low-cost opportunities across a mine and process plant may result in total energy savings of up to 10-15% and overall emissions reductions of over 200 Mt of CO2e per annum, depending on the source of electricity.

“Large-scale introduction of renewable energy provides the potential to reduce emissions significantly in the industry – hundreds of millions of tonnes of greenhouse gas savings when there is widespread adoption of renewable energy and energy storage.”

CEEC CEO, Alison Keogh, commended Weir for commissioning this timely work, and all industry leaders taking proactive steps to reduce mining’s footprint. She said outstanding CEEC Medal winning work and 700 published advances have already shared good options for miners to consider, thanks to CEEC sponsors, volunteers and authors.

She urged industry to collaborate to accelerate decarbonisation steps.

“More open knowledge sharing helps speed installations of renewables and energy-efficient approaches across all of industry,” Keogh said. “Benefits also include increased productivity, shareholder value, and financing as companies demonstrate performance towards net zero emissions sooner.”

She cited three key collaboration actions vital to success: (1) sharing best practices, to ensure existing mines and processing plants are better informed and take actions earlier to become more energy and water efficient; (2) sharing new technologies, designs and innovations; and (3) supporting test work and pilots of novel technology on sites and at increasing scales.

Keogh called for greater industry dialogue, noting: “This report highlights both a challenge and an opportunity to revitalise cross-industry discussion and actions on decarbonisation and ESG solutions. Weir is one of many visionary CEEC sponsors supporting public good initiatives like CEEC; we invite industry leaders to actively contribute and collaborate through mining-vendor-research partnerships and share knowledge, site case studies and net zero plans via independent organisations such as CEEC.

“Together, we can accelerate improved energy, emissions and water footprint across industry faster.”

Weir Group Chief Executive, Jon Stanton, commented: “Mining needs to become more sustainable and efficient if it is to provide essential resources the world needs for decarbonisation while reducing its own environmental impact. This report is an important contribution to that debate which we hope will spark thoughtful conversations around the world on the way forward.”

NextOre’s magnetic resonance tech up and running at First Quantum’s Kansanshi

Australia-based NextOre is onto another ore sorting assignment with its magnetic resonance (MR) sensing technology, this time in Zambia at First Quantum Minerals’ Kansanshi copper mine.

NextOre was originally formed in 2017 as a joint venture between CSIRO, RFC Ambrian and Worley, with its MR technology representing a leap forward in mineral sensing that provides accurate, whole-of-sample grade measurements, it says.

Demonstrated at mining rates of 4,300 t/h, per conveyor belt, the technology comes with no material preparation requirement and provides grade estimates in seconds, NextOre claims. This helps deliver run of mine grade readings in seconds, providing “complete transparency” for tracking downstream processing and allowing operations to selectively reject waste material.

Having initially successfully tested its magnetic resonance analysers (MRAs) at Newcrest’s Cadia East mine in New South Wales, Australia, the company has gone onto test and trial the innovation across the Americas and Asia.

More recently, it set up camp in Africa at First Quantum Minerals’ Kansanshi copper mine where it is hoping to show off the benefits of the technology in a trial.

The MRA in question was installed in January on the sulphide circuit’s 2,800 t/h primary crushed conveyor at Kansanshi, with the installation carried out with remote assistance due to COVID-19 restrictions on site.

Anthony Mukutuma, General Manager at First Quantum’s Kansanshi Mine in the Northwestern Province of Zambia, said the operation was exploring the use of MRAs for online ore grade analysis and subsequent possible sorting to mitigate the impacts of mining a complex vein-type orebody with highly variating grades.

“The installation on the 2,800 t/h conveyor is a trial to test the efficacy of the technology and consider engineering options for physical sorting of ore prior to milling,” he told IM.

Chris Beal, NextOre CEO, echoed Mukutuma’s words on grade variation, saying daily average grades at Kansanshi were on par with what the company might see in a bulk underground mine, but when NextOre looked at each individual measurement – with each four seconds representing about 2.5 t – it was seeing some “higher grades worthy of further investigation”.

“The local geology gives it excellent characteristics for the application of very fast measurements for bulk ore sorting,” he told IM.

Mukutuma said the initial aim of the trial – to validate the accuracy and precision of the MRA scanner – was progressing to plan.

“The next phase of the project is to determine options for the MRA scanner to add value to the overall front end of processing,” he said.

Beal was keen to point out that the MRA scanner setup at Kansanshi was not that much different to the others NextOre had operating – with the analyser still measuring copper in the chalcopyrite mineral phase – but the remote installation process was very different.

“Despite being carried out remotely, this installation went smoother than even some where we had a significant on-site presence,” he said. “A great deal of that smoothness can be attributed to the high competency of the Kansanshi team. Of course, our own team, including the sensing and sorting team at CSIRO, put in a huge effort to quickly pivot from the standard installation process, and also deserve a great deal of credit.”

Beal said the Kansanshi team were supplied with all the conventional technical details one would expect – mechanical drawings, assembly drawings, comprehensive commissioning instructions and animations showing assembly.

To complement that, the NextOre team made use of both the in-built remote diagnostic systems standard in each MRA and several remote scientific instruments, plus a Trimble XR10 HoloLens “mixed-reality solution” that, according to Trimble, helps workers visualise 3D data on project sites.

“The NextOre and CSIRO teams were on-line on video calls with the Kansanshi teams each day supervising the installation, monitoring the outputs of the analyser and providing supervision in real time,” Beal said. He said the Kansanshi team had the unit installed comfortably within the planned 12-hour shutdown window.

By the second week of February the analyser had more than 90% availability, Beal said in early April.

He concluded on the Kansanshi installation: “There is no question that we will use the remote systems developed during this project in each project going ahead, but, when it is at all possible, we will always have NextOre representatives on site during the installation process. This installation went very smoothly but we cannot always count on that being the case. And there are other benefits to having someone on site that you just cannot get without being there.

“That said, in the future, we expect that a relatively higher proportion of support and supervision can be done through these remote systems. More than anything, this will allow us to more quickly respond to events on site and to keep the equipment working reliably.”

Panoramic, Primero and Barminco get to work on restarting Savannah nickel operation

Panoramic Resources Ltd, after a 12-month review process, has approved the restart of the Savannah Nickel Operation, in the Kimberley region of Western Australia.

The decision hinges on a 12-year mine life with an average annual production target of 9,072 t of nickel, 4,683 t of copper and 676 t cobalt in concentrate; as well as an offtake agreement with Trafigura that will also see the trading company provide a loan facility of up to A$45 million to cover the A$41 million of upfront capital cost required to restart the mine.

Savannah is set to operate at average site all-in costs of A$6.36/lb of payable nickel, net of copper and cobalt by-product credits and royalty payments. This equates to roughly $4.86/Ib or $10,714/t.

Savannah, with more than A$100 million already invested, has been maintained since the suspension of operations in April 2020 with a view towards operational readiness and project optimisation. This includes the recent completion of the FAR#3 ventilation raise, underground capital development on four mining levels at Savannah North and ancillary capital works on surface and underground infrastructure, which are currently being completed, Panoramic said.

The restart decision has led to divisions of Perenti and NRW Holdings being awarded significant contracts related to the resumption of mining activities.

Barminco, a subsidiary of the Perenti Group, has been awarded a four-year underground mining contract under a binding letter of intent and is scheduled to mobilise to site in July 2021. The contract will be serviced by new underground mining equipment including the use of tele-remote mining equipment, expected to deliver both safety and productivity benefits, Panoramic said.

The contractor was formally awarded the A$200 million contract back in February.

“Based on Barminco’s previous working knowledge at Savannah, opportunities to increase ore production and reduce dilution have also been identified,” the company added, explaining that underground mining is planned to commence in August, with ore to initially be sourced from both the Savannah and the Savannah North deposits.

Following an evaluation of an owner-operator model for the processing plant and a competitive contract tender process, Panoramic has also signed a non-binding letter of intent worth A$35 million with Primero (owned by NRW Holdings), which envisages a three-year agreement. The agreement relates to all processing and maintenance work at the Savannah processing plant, which has been maintained in “excellent condition” during the suspension, Panoramic said.

“A number of opportunities for improved recoveries through enhanced operating practices and minor capital projects have been identified,” the company added. As a result, the non-binding letter of intent with Primero has been structured to incentivise achieving higher than budget recoveries.

Panoramic is working with Primero to complete a binding contract in the coming months, but ore processing is set to restart in November 2021, allowing ore stockpiles to build for around three months (100,000 t) to de-risk ore supply issues.

The process plant at Savannah was commissioned in August 2004 and comprises a single stage crusher, SAG mill, flotation, thickening and filtering stages to produce a bulk nickel, copper, cobalt concentrate. Over the 2004 to 2016 initial operating period, metallurgical recoveries averaged 86-89% for nickel, 94-97% for copper and 89-92% for cobalt. The plant was originally designed for a throughput of 750,000 t/y, but consistently outperformed the design specifications with rates exceeding 1 Mt on an annualised basis, Panoramic said.

First concentrate shipment from the Wyndham Port is targeted for December 2021.