Tag Archives: mineral processing

Zinnwald striving for battery-electric circularity with lithium project development

The development of the integrated Zinnwald lithium project in Germany could see the incorporation of a battery-electric fleet of LHDs and the return of metal production to a region of saxony with mining history dating back to the Middle Ages.

The London-listed owner of the project, Zinnwald Lithium Plc, has just released a preliminary economic study on its namesake project focused on supplying battery-grade lithium hydroxide to the European battery sector.

As with any responsible battery metal project being developed today, the project’s ‘green credentials’ are being considered even at this early stage.

Zinnwald Lithium has been keen to flag these, mentioning the project is located close to the German chemical industry, a fact that should enable it to draw on a well trained and experienced workforce with well-developed infrastructure, plus reduce the ‘carbon footprint’ of the final end-use product.

This focus will see all aspects of the project – from mining through to production of the end product – located near to the deposit itself.

Zinnwald Lithium also said the project has the potential to be a low- or ‘zero-waste’ project, as the vast majority of both its mined product and co-products have their own large-scale end-markets.

This could see it produce not only battery-grade lithium hydroxide monohydrate products, but sulphate of potash (SOP) for the fertiliser market and precipitated calcium carbonate (PCC) – the latter being a key filling material in the paper manufacturing process.

The project now includes an underground mine with a nominal output of approximately 880,000 t/y of ore at an estimated 3,004 ppm Li and 75,000 t/y of barren rock. Processing, including mechanical separation, lithium activation and lithium fabrication, will be carried out at an industrial facility near the village of Bärenstein, near the existing underground mine access and an existing site for tailings deposition with significant remaining capacity.

With a 7-km partly-existing network of underground drives and adits from the ‘Zinnerz Altenberg’ tin mine, which closed in 1991, already mapped out, the bulk of ore haulage is expected to be via either conveyor or rail

The nominal output capacity of the project is targeted at circa-12,000 t/y LiOH with circa-56,900 t/y of SOP, 16,000 t/y of PCC, circa-75,000 t/y of granite and 100,000 t/y of sand as by-products.

The company is looking to complete the ‘circularity’ dynamic in its fleet and equipment selection, according to CEO, Anton Du Plessis, who mentioned that electric LHDs could be used to load and haul ore to an ore pass in the envisaged operation.

He said the cost estimates to use such equipment – which are factored into the project’s $336.5 million initial construction capital expenditure bill – have come from Epiroc, which has a variety of battery-operated mobile equipment.

“The base case is battery-operated loaders,” he told IM. “The final selection will be based on an optimisation study where, in particular, partly trolley-fed haulage systems will be investigated.”

Forms of automation are also being studied, Du Plessis said, with the caveat that “only select technologies we consider proven” will be evaluated.

Zinnwald Lithium is also looking at electric options for long-hole drilling underground, with both battery-based units and cabled versions under consideration and requiring firming up in the optimisation study.

With a 7-km partly-existing network of underground drives and adits from the ‘Zinnerz Altenberg’ tin mine, which closed in 1991, already mapped out, the bulk of ore haulage is expected to be via either conveyor or rail. The former, of course, will be powered by electricity, but the company is also considering potential battery-electric options for the latter, according to Du Plessis.

The company is blessed with existing infrastructure at the mine, which should help it in advancing the project at the pace its potential end-use manufacturing suppliers would like. It is already evaluating options for the construction stage – with an engineering, procurement and construction management contract the most likely option – and it has plans to conclude a feasibility study by the end of next year.

Du Plessis said while most of the fixed assets have been removed or were deemed outdated a long time ago from the former operating underground mine, other infrastructure was in good shape.

“The excavations, main level, underground workshop, ventilation shafts and, particularly, 2020 refurbished access tunnel provide a very good starting point for our project,” he said. “The access tunnel was originally constructed for dewatering the old mine and, therefore, the mine and the tunnel have been maintained very well.”

The company is now shifting to the bankable feasibility study and currently selecting partners for the project.

With what it calls a “simple, five-stage processing” route confirmed by test work for the extracted material at Zinnwald, the company is looking to select OEMs with the optimal concept for the project, Du Plessis said.

“In the PEA, mineral processing equipment cost is based on Metso Outotec estimates, pyrometallurgy is based on Cemtec technology, and hydrometallurgy is based on various providers’ technology,” he clarified.

Multotec pulping chute advances at Ekapa open opportunities for fines scrubbing tech

The performance of Multotec’s pulping chutes at Ekapa’s diamond treatment operation in Kimberley, South Africa, over the past couple of years has, the company says, opened the door to quicker and more cost effective fines scrubbing.

According to John Britton, Technical Consultant at Multotec, the two pulping chutes have achieved outstanding results, helping the customer’s facility to cost effectively increase the throughput of its Combined Treatment Plant (CTP).

“At our recent two-year inspection of the plant, we found that the wear rate on the ceramic lining of the wave generator was only 20 mm over that 24-month period,” Britton says. “Each chute was processing 380 t/h of recrushed kimberlite product with 380 cu.m of water, rushing down a 28° incline.”

Multotec’s patented wave generators use gravity to create a constant turbulent mixing action in the slurry flow that releases the mud, clay and slime sticking to the kimberlite particles. The chutes are positioned to receive material from the high pressure grinding rolls’ interparticle tertiary crushing circuit. Multotec’s engineered alumina ceramic tiles give the chutes and wave generators high wear resistance, it says.

“The chutes exceeded our expectations in how well they separated the clay from the kimberlite ore and broke up clay balls in the material stream,” Britton says. “This has really demonstrated the long-term capacity of our design to deliver results with hardly any maintenance or operator intervention.”

He highlights that the chutes are stationery structures that rely on the kinetic energy being created by the in-rush of slurry flow over the wave generators. This makes the solution much simpler and less energy-intensive than traditional rotary scrubbers with motors, drives and gearboxes. The chute can also achieve its results much quicker, as the material flow passes through in just three to four seconds.

Ekapa CEO, Jahn Hohne, says he has been impressed by how well the chutes have performed as an alternative to a considerably more costly scrubber circuit, and having delivered a 20% increase in throughput through the plant and making a positive economic contribution to overall efficiency. Hohne says he admired Multotec’s innovation capability and looked forward to even further improvements in the design.

Britton notes that, after conducting the wear inspection of the chutes, there were modifications Multotec was planning. One of these related to the retarder bars, which slow down and divert the slurry flow.

“We believe we can achieve even better results if we remove some of the retarder bars and install another set of wave generators,” he says. “Our results suggest that this will get the ore material even cleaner, before it reports to the screen, the conveyor belt and finally the dense medium circuit.”

The success of the pulping chutes at Ekapa has led to considerable interest from other diamond producers in southern Africa, he added.

Metso Outotec to supply Planet Positive Vertimills to iron ore project in South America

Metso Outotec says it has been awarded a contract to deliver sustainable grinding technology to an iron ore project producing premium pellet feed in South America.

The total value of the order exceeds €10 million ($10.2 million), the company says.

The OEM’s scope of delivery consists of the engineering, manufacturing and supply of four Vertimill® vertical grinding mills. In addition, Metso Outotec will provide installation and commissioning advisory services. The Planet Positive Vertimill grinding mills are expected to save more than 30% of the installed power compared with a conventional ball mill circuit, the company says.

“We are pleased that our customer has chosen the industry-leading Vertimill technology,” Christoph Hoetzel, Head of the Grinding business line at Metso Outotec, says. “The regrinding circuit will enable energy-efficient grinding combined with low operating and life-cycle costs.”

Kwatani wins major screening order from Central Asia copper mine

Competing with leading OEMs from around the world, vibrating screen specialist OEM Kwatani says it has snatched a mammoth export order for over 70 screens from a mining operation in Central Asia.

The order was signed in April with a large copper mine in the region, which boasts a production rate of 35 Mt/y. According to Kwatani General Manager Sales and Service, Jan Schoepflin, the machines will be rolled out and delivered over a tight schedule of just eight months.

Kwatani, now part of the Sandvik group within the Sandvik Rock Processing Solutions division, is already hard at work manufacturing the large and medium-sized screens at its South Africa-based manufacturing facility.

“This is Kwatani’s largest order to date and is probably the largest single order for screens ever placed with a company in Africa,” Schoepflin says. “We are proud to have won such a prestigious bid in the face of intense competition, showing how our global reputation has been growing.”

The order is for large double-deck multi-slope screens, which feed high pressure grinding rolls, as well as for single-deck linear screens feeding concentrators. The screens in this order will be installed on isolation frames to minimise the extent to which dynamic loads affect the plant’s building structures, the company says.

Kwatani says it is well known for its design, manufacture and servicing of large, robust screens which are engineered for tonnage.

“As the largest OEM for vibrating screens and feeders in Africa, we have had great success on the continent and abroad with our large ‘banana’ screens,” Schoepflin says. “These and our other custom-engineered screens have been supplied to over 50 countries to date.”

The stringent and lengthy technical adjudication for this project was conducted for the mine by two leading international project engineering houses. The size and value of the order ensured all the mining industry’s foremost screen suppliers participated in the bid. Other indicators of the order’s scale are that the screens will consume around 700 t of steel, and will altogether be fitted with 21,000 screening panels.

Schoepflin notes that an important consideration for customers is not only the proven quality and performance of its screens, but Kwatani’s ability to deliver on time.

“Any large capital expenditure decision on a mine is taken with time-sensitive factors in mind,” he says. “For instance, the delayed delivery of critical equipment can prevent a mine from meeting its planned production targets. This undermines the financial basis for that decision – an eventuality that no mine can afford.”

The end-customer and the project houses, therefore, had to have full confidence in Kwatani’s capacity.

With growing demand from a buoyant mining sector, the company recently added another 3,000 sq.m to its existing 17,000 sq.m facility in Spartan, Johannesburg. Its design and manufacturing capabilities are ISO 9001:2015 certified, ensuring that the latest order to Asia will comply with the highest global standards, he says.

“We also pride ourselves on the quality and resilience of our supply chain, which underpins our ability to manufacture to demanding deadlines,” Schoepflin says. “We carefully select our supply partners – most of whom are local enterprises – and collaborate closely with them to build their sustainability and responsiveness.”

To keep the project’s schedule on track, dedicated in-house project managers and procurement specialists meet regularly with supply partners to ensure a smooth and streamlined process. This has required alignment of all local and global procurement, including motors, drives and steel. The company’s agility allowed contracts and prices to be tied down for timeous delivery, despite the global supply chain disruption that lingers from the COVID-19 lockdowns, Kwatani says.

Kwatani will conduct training of the mine staff in maintenance and troubleshooting, so that they can fulfil these essential duties independently. The mine will be able to source all the necessary spares from Kwatani, who will also send an engineer or technician to site to supervise and sign off on certain major tasks.

Meeting delivery deadlines and avoiding penalties will require detailed logistical planning for the completed units, Schoepflin notes. The screens will be delivered in batches to a South African port, and shipped as break bulk due to their size. Production of the screens is expected to be complete by early 2023.

Weba Chute Systems wins retrofit design work at Mpumalanga coal mine

When a coal mine in South Africa’s Mpumalanga province needed to replace its high maintenance conventional transfer chutes, it looked to Weba Chute Systems for the best custom-engineered design, the manufacturer says.

Weba Chute Systems is currently busy with designs that will pave the way for the retrofitting of over a dozen chutes at the mine. Eight of the units are silo discharge chutes, transferring coal from the operation’s run-of-mine feed to its coal processing plant. Another four chutes are to be replaced in the plant itself, while there is another chute located between two related feed conveyors.

“The main objective of the new bespoke chutes is to ensure stable supply to the plant, and from there to the nearby power station,” Dewald Tintinger, Weba Chute Systems’ Technical Manager and Designer, says. “The existing equipment is demanding too much maintenance, leading to unacceptable levels of downtime.”

The key to improved uptime and extended chute lifespan is the company’s flow control principles in its designs. The chutes in the plant, for example, must deal with oversize material of between 150 mm and 500 mm in size.

“Handling these large particles, chutes are exposed to high levels of impact and wear,” Tintinger says.“With the controlled flow philosophy of our Weba ‘cascade’ chute system, we control both the velocity and the impact.”

Commenting on other aspects of the custom designs, Tintinger says the transfer points will include features such as dead-boxes to create a lining from the mined material itself. This reduces the wear on the chute’s metal surfaces, extending the maintenance intervals and delivering more uptime. He highlights that the processing plant feeds the power station directly through two overland conveyors.

“This is a highly efficient model for delivering coal, but it demands that all elements of the materials handling system are working together,” he says. “Any disruption of coal flow caused by a transfer chute can cause costly delays, and render coal delivery unreliable.”

He notes that the mine has had good experience from the many other Weba chutes already installed at this operation, and is now standardising on this internationally accepted transfer point design for better results.

Designs and engineering are conducted in-house by Weba Chute Systems’ experienced team, using the latest software and finite element analysis tools for testing.

The design work is expected to be completed around the middle of 2022. Thereafter the mine will be in a position to contract the fabrication and installation work.

Metso Outotec greenfield iron ore contract to include most sustainable tech available

Metso Outotec says it has been awarded a major contract for the delivery of sustainable crushing, screening and grinding technologies to a greenfield iron ore project in South America.

The concentrator plant has a targeted production of premium pellet feed, with the total value of the order approximately €45 million ($47 million).

The comminution circuit flowsheet developed for the new concentrator plant in cooperation with Metso Outotec represents the most sustainable technology currently available, according to the OEM. Conventional horizontal mills have been replaced with the combination of HRC™e high pressure grinding rolls (pictured above) and Vertimill® grinding mills to achieve the best energy-efficiency with the lowest operating and life cycle costs, it says.

By using this flowsheet, the plant is expected to save 25% of installed power compared with a conventional high pressure grinding roll (HPGR)/ball mill circuit and over 40% compared with a conventional SABC (SAG mill followed by pebble crusher and ball mill) circuit, the company claims.

Metso Outotec’s scope of delivery consists of the engineering, manufacturing, and supply of SuperiorTM MKIII Primary Crusher, HP SeriesTM cone crushers, HRC e HPGR high pressure grinding rolls, vibrating feeders, as well as banana, horizontal and dewatering screens and Vertimill grinding mills. In addition, Metso Outotec will provide installation and commissioning advisory services and wear and spare parts.

Christoph Hoetzel, Head of Grinding business line at Metso Outotec, said: “Metso Outotec is honoured to be chosen to deliver these state-of-the-art comminution technologies. The plant’s Planet Positive comminution flowsheet combines the best solutions available, allowing to achieve superior energy-efficiency and lower wear rates.”

Fernando Samanez, Vice President, Minerals Sales, South America market area at Metso Outotec, added: “This is a remarkable project and Metso Outotec will play a significant role also in the project start-up with its strong local operations and highly skilled service team.”

Jervois gears up for Idaho Cobalt Operations commissioning

Jervois Global is progressing the build of the Idaho Cobalt Operations (ICO) in the US, with the mill set to be commissioned in September and full production slated for February 2023.

Once in production, ICO is billed as being the only primary cobalt mine in the US, able to supply a critical metal necessary for electric vehicles, energy generation and distribution, defence and other industries.

In its latest project update, Jervois said that it had come up with a revised construction budget of $107.5 million that had board approval. This was up from the previous $99.1 million outlined, reflecting a heighted inflationary environment in the US.

This adjusted final forecast capital expenditure and schedule will form the basis of a “Cost to Complete” test by independent engineer RPMGlobal, who has been engaged by the trustee acting for bondholders under the terms of Jervois’ $100 million Senior Secured Bonds. RPM engineers are scheduled to visit site in early July to undertake the final Cost to Complete test ahead of the planned second tranche bond drawdown of $50 million later that month.

Mine development, meanwhile, continues at circa-25 ft/d (7.6 m/d), the company noted. Planned increases to underground working faces, improved water management and road conditions, as well as additional personnel and mining equipment on site, are expected to increase mine development productivity, it said.

“Jervois and its mining contractor, Small Mine Development, remain confident in the revised mining production targets that underpin the capital cost update,” the company stated.

Jervois says it is achieving infill drilling rates over 200 ft/d as part of a 19,000 ft underground campaign to decrease hole space aiming to enhance orebody knowledge. The drilling is improving the robustness of the resource model to generate a production block model for mining, it added.

The SAG mill, ball mill and crusher are each in place, and work continues with facilities construction and equipment placement, Jervois noted, saying that an official opening ceremony was scheduled at site for October 7, 2022. The SAG mill, a 4.7-m diameter and 2.5-m-long 750 kW installation, is provided by Metso Outotec.

A 2020 bankable feasibility study, managed by a joint team of DRA Global and M3 Engineering, was based on extracting 2.5 Mt of ore at an average grade of 0.55% Co, 0.8% Cu and 0.64 g/t Au. The initial mine life within the study was seven years.

Haver & Boecker launches next-gen Niagara T-Class vibrating screen

Haver & Boecker Niagara has announced the next-generation Niagara T-Class vibrating screen, which, the company says, retains the technical benefits the original concentric technology is known for while improving screening uptime and performance with new features.

The T-Class provides producers with a cost-effective, maintenance-friendly solution to process a wide range of materials within the aggregates, mining, industrial minerals, recycling industries and more, it said.

The T-Class deck frame is now primarily lockbolted rather than welded to provide optimum strength, reliability and safety. Lockbolts are proven to be more effective than welding in the demanding, load-bearing, high-vibration operation of a vibrating screen to ensure the machine’s structural integrity, the company said. The robustness of the machine also permits cross beams to be positioned and lockbolted every four feet (1.2 m) instead of every two feet, allowing for better clearance and easier maintenance.

The new design allows producers to upgrade their vibrating screen with Haver & Boecker Niagara’s new Drop Guard system, further minimising maintenance. The innovative liners provide 100% cross beam protection, both reducing wear and extending the life of the vibrating screen, according to the company. The system simply drops over the cross beam with no adhesive or tools required, making installation quick and easy, it says.

Additionally, Haver & Boecker Niagara redesigned the flat deck frames of the new T-Class vibrating screen for simplified maintenance. The pin & anchor deck frame is adaptable to virtually any pin-style modular screen media. It features polyurethane anchors that are easy to replace and prevent premature wear on the deck frame. Additionally, the open design of the modular deck prevents material build-up on the bar rails. The cap & slide deck frame, meanwhile, is adaptable to virtually any groove style modular screen media and features full rail protection.

The T-Class can also be manufactured for side-tensioned or bottom deck end-tensioned screen media. Each new side-tensioned machine comes with Haver & Boecker Niagara’s signature Ty-Rail™ quick-tensioning system, which cuts screen change-out times in half, the company claims.

Duncan High, the product manager behind Haver & Boecker Niagara’s new T-Class design, said: “The new, more robust T-Class was designed specifically to offer more strength in the middle of the machine, where it’s needed most. Each update was engineered with ease of maintenance in mind, to keep downtime low while providing cost efficiency.”

All Haver & Boecker Niagara vibrating screens undergo extensive testing, inspection and Pulse Vibration Analysis prior to shipping to ensure correct balance and smooth operation, the company concluded.

AspenTech Mtell Agents getting ahead of the mine maintenance game

AspenTech is looking to turn condition monitoring procedures in the minerals processing plant on their head by providing prescriptive maintenance tools powered by machine learning that offer the earliest possible issue detection along with the required context to allow operators to act.

“After more than a decade of working on Mtell, we understand how to slot into an operation to make sure our data is clear, prescriptive and acted on,” Mike Brooks, Global Director of APM Solutions at AspenTech told IM recently.

Aspen Mtell® has been a gamechanger for industries such as metals and mining, according to the company, performing prescriptive maintenance by forecasting degradation and equipment failures, alerting staff in advance of when a failure could occur, identifying potential causes and the scope of any failure, and providing advice on the corrective action to avoid or mitigate the impending failure.

This is leading to increased operational efficiency, resulting in improved energy efficiency and reduced emissions, according to the company.

Unlike other mining-related predictive maintenance proponents, AspenTech and Aspen Mtell have been using machine learning for over a decade, using the benefits of this technology to improve on the condition monitoring and firefighting maintenance procedures in place at industrial sites.

“By obtaining sufficient domain knowledge and packaging it into a solution, we have created a product that is able to detect patterns in the data, track any anomalies and contextualise these anomalies on the basis of past performance and previous incidents,” Brooks explained.

This process involves detecting failures, “hidden failures” (spikes or changes in behaviour not associated with an event) and when an asset is offline from past operating data and contextualising this within what is considered ‘normal’ operating conditions. From this, data analysts create “Failure Agents” and “Anomaly Agents” to spot potential failures and watch for changes in normal operating behaviour.

Once these Agents have been trained from historical data, they are deployed to monitor live equipment feeds with all deviations labelled as anomalies and detected by the appropriate Agent.

If an anomaly does not match the signature of a deployed Failure Agent, the anomaly triggers an alert requesting an inspection to determine the cause. The results of the inspection will categorise the anomaly as either a new variation of “normal” or a new never-before-seen failure pattern.

If it is the former, the Anomaly Agent will be updated with this new information to make sure no future false alerts with the same signature occur. If categorised as a new failure, a new Failure Agent will be deployed to allow for earlier detection in the future.

The more operating data the Aspen Mtell platform ingests, the more accurate the alert system becomes and the more context the solution can provide operators. Brooks said around a year’s worth of data often proves enough to know what ‘normal’ looks like while ensuring false alerts are kept to a minimum.

In some instances, Aspen Mtell has managed to get ahead of a potential failure on certain components by 4-6 months, allowing maintenance personnel to strategically schedule maintenance procedures and reduce unplanned downtime, according to Brooks.

“Not only are we able to identify the root cause and failure mode with alerts, but we can also often provide details of exactly what is needed to fix it based on past experience,” he said. Such information is particularly useful in an industry like mining, which has an ageing employee demographic that will, in the future, need to be replaced with a new generation of personnel.

“This is all part of our vision of the ‘Self-Optimizing Plant’,” Brooks said.

The Self-Optimizing Plant, as AspenTech puts it, is a self-adapting, self-learning and self-sustaining set of software technologies that work together to anticipate future conditions and act accordingly, adjusting operations within the context of the enterprise. The plant does this through pervasive real-time access to data and information, combining engineering fundamentals and artificial intelligence, and capturing and using knowledge to optimise across multiple levels, provide recommendations and automate actions securely in a closed feedback loop.

While the mining industry is still some way off adopting such a vision, AspenTech is getting nearer to convincing the sector of its potential future worth.

Brooks provided an example from a mining company with a worldwide presence that was having difficulty with frequent production interruptions caused by unexpected equipment failures as a case in point.

This company decided to deploy Aspen Mtell across a whole site to improve the reliability and availability of equipment, boost production yields and reduce maintenance costs.

On the secondary cone crusher at the operation in question, the Aspen Mtell application gave an extreme early warning and exposed a multi-dimensional pattern showing fast incremental changes, according to AspenTech. This provided the technicians with the required insights to detect the degradation issue and take the appropriate action, avoiding operational complications that can result in production and maintenance costs in the order of $100,000-500,000 per incident.

Similarly, Aspen Mtell was able to deliver a very early lead time and warnings of a bearing issues on the cone crusher, well in advance of the vibration detection system, allowing early action to service a minor issue before a catastrophic failure. This resulted in savings of around $75,000, according to AspenTech.

Equally, monitoring and catching potential bearing problems on conveyors allowed early replacement without the extended shutdowns associated with unplanned maintenance. Such avoidance is generally worth around $1-$1.5 million in operational costs, AspenTech says.

“The net results were that the company was able to better plan and schedule service and repairs on the mobile heavy haul trucks and the static ore processing, improving operators’ safety, extending component lifetimes, and increasing equipment availability besides improving on spare part/resource planning,” it said.

“The positive results encouraged the company to expand the Aspen Mtell application to other mining sites.”

Brooks says this specific company is one of a handful of miners realising the benefits of Aspen Mtell, with the mining sector fast becoming one of AspenTech’s key growth markets behind oil & gas.

And, with AspenTech having just completed the acquisition of Emerson’s OSI Inc and Geological Simulation Software business, there could be many more mining-related opportunities on the horizon.

Sandvik offers up enhanced three-deck Doublescreen solution

Sandvik Mobile Crushers and Screens, part of Sandvik Rock Processing Solutions, has announced what it says is a new first-of-its-kind, three-deck tracked mobile plant with independent screen angle adjustment and hydraulic screen separation in the form of its QA452.

The latest evolution of the Sandvik QA Series products and three-deck Doublescreen technology, the QA452 features two triple deck inline screen boxes with equal size screen decks, each providing 9 cu.m of screening area

Sandvik Doublescreen technology typically outperforms traditional screens by up to 30%, offering a tailored rock processing solution for quarry, recycling and mining industries, Sandvik says.

Screen enhancements on the equipment include an 11% longer bottom screen deck to extract more fines.

“Featuring independent screen angle adjustment, the primary screen can be independently adjusted from the secondary screen, allowing operators to optimise their throughput, screening efficiency and product gradations,” the company said. “The primary screen performs as a fines extractor, whilst the secondary screen performs as a grader. Two processes on one plant, offering exceptional flexibility, excellent separation, accurate grading and massive throughput.”

Sandvik offers hybrid ‘e’ drive with electric plug-in on this solution, meaning operators can choose the most economical and efficient energy source. The QA452 provides a lower environmental impact due to reduced fuel consumption, and the latest powerpack on-board offers less operating noise and low emissions, according to the company. In addition, the hydraulic system has been enhanced to reduce energy wastage, and its hydraulic oil change intervals have been extended from 2,000 hours to 4,000 hours meaning up to 50% less hydraulic oil is consumed over 10,000 hours of machine usage (subject to oil sampling).

The primary screen on the QA452 can also be hydraulically separated to gain better access for maintenance and screen media changes. The addition of a new oversize cross conveyor means greater oversize material extraction, while this cross conveyor can also be reversed to allow the plant to function like a two-deck screen with oversize and mid overs discharged together.

Each screen deck features end tension screen media using Sandvik’s unique mesh tensioning system. This means faster screen mesh tensioning and removal, reducing downtime. The company’s new range of Sandvik WX rubber media, meanwhile, combines the high accuracy of wire screens with the durability of rubber, offering up to 10 times longer wear life and up to 50% faster installation time compared with wire mesh, according to the company. Having equal size panels also means the screen media is interchangeable between decks.

On top of this, thee QA452 comes with Sandvik’s My Fleet telemetry system and seven-year data subscription as standard. This offers 24/7 fleet management, geo-fencing and remote support, according to Sandvik.

Several safety features are included as standard to improve operator and on-site protection. Dust suppression spray bars, on-board water pump, safety pull cords and lighting mast are now fitted as standard for extra peace of mind.