Tag Archives: mineral processing

Metso adds crushing & screening flexibility to the process flowsheet with My Plant Planner

Metso is looking to increase access to and improve the visualisation of mining process flowsheets with a new tool that could ultimately see more of its equipment end up at mine sites.

My Plant Planner offers engineering customers and mining end users the ability to model a flowsheet after inputting certain key parameters of their orebodies. They can then also visualise this plant layout in a platform that is free to use.

Metso, along with other OEMs, has provided visualisation tools to the industry for many years.

The company’s Bruno simulation software has over 7,000 users and has been helping customers select the right equipment for their mines since 1994. This software includes all the necessary Metso equipment, such as feeders, crushers and screens, and shows outputs for different end products, providing users with the data they need to make informed decisions on the right equipment.

My Plant Planner utilises this simulation expertise, but does so at a much earlier stage of the equipment selection process.

With the tool, customers can pick and choose different types of crushers, screens and conveyors to get the perfect balance for the circuit and identify bottlenecks to understand where extra capacity is needed, according to Metso.

Important factors, such as capacity, load, and power draw, are updated in real time as the circuit is designed and the parameters updated. At any point, it is possible to download a report that gathers together all the details about the plant being designed. It includes details on the chosen crushers, screens, conveyors and their parameters, including power consumption.

“We decided to develop this tool as we were seeing different types of requirements from our customers and EPCMs (engineering procurement and construction management) at the time around prefeasibility studies and we wanted to be more reactive to this,” Guillaume Lambert, Vice President of Metso’s Crushing Systems business line, explained to IM.

Prior to using such a tool, these EPCM firms were developing flowsheets for economic studies – the type of documents investors use to gauge the potential profitability of a mine development – over a matter of months or years in tandem with OEMs, before moving onto obtaining quotes based on their mining customers’ budgets.

As time has gone on, these firms have been asked by their mining customers to factor in more requirements into these studies. One may require a reduced plant footprint due to the proximity of indigenous communities; another may request that energy consumption is reduced in line with existing available power infrastructure in the region.

The requests vary depending on the size of company, the location of the project, the commodity and many other elements.

This is where the three-dimensional aspect of My Plant Planner is very important, according to Lambert, providing customers with not only a visualisation of the flowsheet, but also a gauge of the physical constraints that cannot be represented in 2D form.

This means companies assessing brownfield assessments can factor in height and width restrictions of existing infrastructure against capital expenditure requirements.

The turnaround time for the type of analysis being carried out by My Plant Planner is also a key selling point, allowing companies to generate results in a matter of hours, as opposed to waiting two to three weeks for a flowsheet assessment.

This speed could allow customers to explore multiple processing flowsheets in a simplified form as part of their due diligence process – for example weighing up a three stage conventional crushing and screening flowsheet against a HPGR circuit.

So far, the crushing and screening portion of the process flowsheet will be covered with the launch of My Plant Planner, but, based on customer feedback, the company plans to expand to the filtration process and other downstream elements.

As to why the company started with crushing and screening, the answer is an obvious one, according to Lambert.

Metso already has Bruno and VPS software (mine to mill assessments) in place – “we don’t have to reinvent the wheel in this regard”, Lambert said – and it is the area of the flowsheet that tends to come with the most equipment options.

“You can have three crushers in parallel, or one big one; a large screen in close circuit, or a smaller one in open circuit, etc,” he said.

It is this flexibility that miners require today. New projects coming to the table are very rarely 20-plus year developments that require a uniform comminution process over their lifetime.

Capex-conscious miners and their investors are instead bankrolling developments that tend to come with less than 10 years of life and are conservative when it comes to throughput. This is with the idea that they will fund the mine life extensions and expansions from existing cash flow when the operation is at full tilt.

These growth plans will inevitably come with the need to amend the process flowsheet down the line – which is where the plant footprint visualisation ability of My Plant Planner could come into play.

Flexibility such as this is also coming into Metso’s equipment line-up, with the company, only last week, launching its flexible FIT™ and smart Foresight™ crushing and screening stations for mining.

The FIT stations are designed with a focus on speed and flexibility, with two stations to choose from – Recrushing station and Jaw station – while the Foresight stations are equipped with smart automation technology including Metso Metrics™, VisioRock™, level sensors and crusher variable frequency drive.

These modular solutions are geared towards reducing capital expenditure and providing shorter lead times. In other words, they offer more flexibility.

It is tools such as My Plant Planner that will highlight just how important this flexibility could be over the life of mine of a chosen operation, providing users with the visibility to help navigate choppy commodity cycles and ensure their operations remain profitable over the long term.

You can find more details on My Plant Planner by clicking here.

Sotkamo Silver chases processing efficiencies with Outotec-TOMRA XRT solution

Sotkamo Silver is looking to reduce the amount of material it grinds and floats at its silver operation in Finland through the introduction of X-ray Transmission (XRT) ore sorting technology.

The company said it began pilot testing of the XRT machine in May after the unit was supplied and successfully commissioned at the mine by Outotec and TOMRA. Outotec and TOMRA have been cooperating on the supply of Outotec-branded sorting solutions for the mining and metallurgical industry since 2014.

Sotkamo’s trial pilot testing builds on previous test work at TOMRA’s testing facilities in Germany.

Previous XRT ore sorting test work carried out by TOMRA on 2,200 kg of Sotkamo samples showed the silver content from low-grade ore increasing some 1.9 x to 116 g/t Ag, while the average silver content in ore rose 1.43 x to 195 g/t Ag. In addition to this, about 60% of the rock previously classified as low-grade ore was removed as gangue with the testing, with some 43% of rock reporting as gangue from the average grade ore samples.

Following this work, back in 2018, Sotkamo Silver said it was looking to install an Outotec-TOMRA XRT ore sorter in the process flowsheet after two-stage crushing (jaw and cone crushers) had taken place and the rock was some 30-70 mm in size.

In the update today, Sotkamo Silver said the XRT technology can scan every feed particle to identify the relative atomic density differences within particles and then separate desired high-grade particles from the barren material pneumatically.

It said sorting of marginal ore would be carried out after primary crushing and it was expected to reduce roughly 50% of non-ore material going into the grinding and flotation process.

“This improves significantly the energy efficiency as less material is grinded, and also material efficiency as marginal ore can be exploited and processed to mill feed,” the company said, adding that leftover barren material would be used as rock-fill in the underground mine.

During the first three months of 2020, around 129,000 t of ore was processed at the silver mine, yielding some 391,000 oz of silver, 462 t of lead, 958 t of zinc and 998 oz of gold in the concentrates.

Los Andes Copper engineers a Vizcachitas alternative

It is a combination of improved technology, reduced fine grind requirements and maintenance benefits that led to Los Andes Copper replacing the SAG and ball mill crushing circuit proposed in its Vizcachitas copper-molybdenum project preliminary economic assessment (PEA), with a three-stage crushing circuit that uses high pressure grinding roll (HPGR) technology in the tertiary crushing stage, according to Executive Chairman, Fernando Porcile.

In the middle of a prefeasibility study on the Vizcachitas project, Los Andes recently issued an update on the study progress.

A delay of PFS publication to the March quarter of 2021 due to the onset of COVID-19 impacting some of the metallurgical test work and field work at the project might have been the key takeaway for investors, but those in the mining technology game will be focusing on the revised process flowsheet being put forward at the Chile project.

One of the big changes was seen at the front end on the comminution side.

In the close to year since issuing the June 2019 PEA, and with the arrival of Porcile and his team, the company’s understanding of its orebody characteristics and the technology available to it as a new greenfield project owner has grown.

Porcile said the ore at Vizcachitas is very suitable to this energy efficient HPGR technology, with metallurgical test work showing an HPGR circuit can reduce the sensitivity to changes in hardness, providing a product that is more consistent in size. This will help reduce major process fluctuations downstream – where there have also been some changes.

The P80 target grind size of 240 microns hasn’t changed much – moving up to a P80 of 240-300 microns – but the SAG and ball mill circuit has been replaced with a three stage crushing circuit using secondary crushers in open circuit and HPGR as a tertiary crusher in closed circuit.

On the preliminary comminution process flowsheet, this includes the use of a Metso Superior™ MKIII primary gyratory crusher, feeding three Nordberg® MP2500™ cone crushers, which move into 40,000 t crushed ore bins. This material is then conveyed to two Metso HRC™ 2600 HPGRs.

Los Andes says the configuration of secondary cone crushers in an open circuit avoids the use of a coarse ore stockpile and recirculation conveyor belts – reducing dust emission sources – while the closed reverse grinding circuit allows less production of fines, which is helpful for the follow-on thickening and filtration stages.

On top of this, the secondary crushing and grinding plant in this setup is close to the primary crusher, which also reduces coarse ore conveying costs.

Porcile said HPGR technology has moved on a long way in the last decade and now represents a more reliable proposition than using the SAG and ball mill circuit previously proposed.

“There is much less risk associated with using HPGRs in a new operation,” he told IM. “Large SAG mills not only take up lots of space within the plant, they can also come with teething problems during start up.”

He added: “HPGRs used to come with lots of wear problems, meaning you had to replace the rollers often. The maintenance on them is that much better now; the rollers do not wear out as quickly and, when they do, you can easily replace them.”

On top of the obvious benefits in energy consumption that come with using HPGR technology, there are positives that can be felt further down the process flowsheet.

“We are very confident that HPGR is the best alternative for our project due to the nature and quality of our ore,” Porcile said. “We produce very little fines, which has an impact on the way we deal with tailings.”

The combination of a lack of fines and low presence of clays (mainly kaolinite) has helped filtration performance in test work, indicating that a dry-stacked tailings solution may be viable at Vizcachitas, Porcile said.

This could provide an up to 50% reduction in water consumption compared with the PEA at Vizcachitas. It could also see some 82% of water recovered throughout the process, in addition to a significant reduction in infrastructure requirements.

“We go from having infrastructure in two valleys in the PEA to one in the PFS,” Porcile said on the latter point.

One may think creating a dry-stacking operation at a 110,000 t/d throughput mine would prove costly and difficult, but the lack of fines and low presence of clays already mentioned means the process is a lot simpler to other dry-stacking projects currently on the table across the globe, according to Los Andes.

Test work to date has indicated that coarse material from the plant (plus-400 microns) could produce a cake with 14%-18% moisture through the use of belt conveyors. This material currently makes up 87% of the envisaged tonnage.

Only 13% of tonnage classed as fines (less than 400 microns) would have to go through pressure filters to produce a 16-19% moisture cake, according to the company.

Porcile says these belt filters work just as well as pressure filters on the coarse material from Vizcachitas but are that much more cost effective.

“Belt filters come with high filtration rates, are low cost (in terms of capex) and are reliable,” Porcile said. “In the study, we envisage saving pressure filters only for the very top level of material.”

While it is too early to talk about the impact these changes will have on the capital expenditure and net present value numbers to be included in the PFS, expect the $1.87 billion and $1.8 billion (after tax and with an 8% discount), respectively, to change.

Orion settles on SAG milling and water treatment at Prieska Cu-Zn project

Two significant engineering changes have had a positive impact on the expected returns from Orion Minerals’ Prieska copper-zinc project in the Northern Cape Province of South Africa.

Issuing an updated bankable feasibility study (BFS) for a proposed new 2.4 Mt/y copper and zinc mining operation earlier this week, the company said there had been “numerous improvements” on the previous study completed in June 2019.

This included a 43% increase in post-tax undiscounted free cash flows from the project to A$1.2 billion ($798 million); a 36% increase in after-tax net present value (8% discount rate) to A$552 million; and a five-month reduction in the capital payback period to 2.4 years.

In the plant, the major changes include the use of SAG milling, and removal of secondary crushing, screening and rock conveyors.

The use of a SAG and ball milling circuit followed by differential flotation removes the need for multiple stages of crushing – which was included in the previous study.

The new plan envisages a high steel charged SAG mill operating in an open circuit with a secondary ball mill operated in a closed circuit with a classification cyclone cluster. The SAG mill trommel screen oversize feeds a pebble crushing circuit which returns crushed product to the SAG mill feed conveyor, the company said.

The milling circuit, meanwhile, is fed with (F100) 250 mm primary crushed material from the primary stockpile at a throughput rate of 300 t/h and produces a product size of 70% passing 75 μm, which is fed to the differential flotation circuit.

In a presentation, Orion stated that the processing plant costs from the 2019 study to the latest BFS had dropped 16% to A$91 million.

The next big change was a different de-watering philosophy of the old workings of Prieska, with the BFS including a new water treatment route. This resulted in a 30% decrease in the shaft dewatering timeline, it said.

The Hutchings Shaft and underground workings at Prieska are currently filled with water to a depth of 310 m below surface and contain a volume of 8.6 Mcu.m of water.

Dewatering of the workings via a pumping system to be installed in the Hutchings Shaft is now planned, with water being pumped into a 1 Mcu.m volume dewatering dam on surface, from where mechanical evaporators and a reverse osmosis water treatment plant will be used to dispose of and treat the water for discharge into the environment.

The use of water treatment supplements mechanical evaporation, which allows the pumping schedule to be accelerated by four months, Orion said. “Furthermore, the Department of Human Settlements, Water and Sanitation stipulated as part of the IWUL (Repli Integrated Water Use Licence) application process that provision be made for a portion of the dewatered volume to be made available for social, commercial or agricultural use in the locality.”

Forced evaporation is planned to be used as the primary means to dispose of the water with the water treatment plant (WTP) as the secondary means to treat and then discharge treated water into the environment as irrigation water.

Forced evaporation requires the use of a large evaporation dam, according to Orion, which impacts environmental considerations when compared with the small footprint required by the WTP.

“This is mitigated through the early construction of the tailings storage facility (TSF) which serves a dual purpose for early project phase dewatering and later as a TSF during the operational life of the mine,” the company said.

These actions, in addition to prioritising the extraction of higher grade (and confidence) mineral resources earlier in the mine schedule, helped significantly improve the project return economics, according to Orion.

While the changes also came with a 9% increase in peak funding requirements to A$413 million to cater for the operational improvements, it would also see 20% more payable copper produced – 226,000 t – and 17% more payable zinc produced – 680,000 t – over the 12-year mine life.

Orion’s Managing Director and CEO, Errol Smart, said: “With the Prieska BFS update now complete, the development of the Prieska project is ideally positioned to play a vital role in the local economic recovery plan for the Northern Cape region.

“The project’s low exposure to imported materials and foreign labour reduces construction challenges as the world overcomes and recovers from COVID-19.”

Smart added that the company was targeting a production start-up in 2024 as market conditions permitted.

New leadership at remote optimisation consulting company

Orway IQ has named former Sibanye-Stillwater employee Marnu Lombaard as its new Chief Executive Officer.

Lombaard, who was named company chief with effect from May, takes over from Fred Kock who filled the role temporarily during the establishment phase of the business development, the company said. Kock remains a Director and Technical Consultant within the business.

Lombaard joins the company from Sibanye-Stillwater’s gold segment where he held the position of Vice President Metallurgy and Surface operations.

“Marnu brings to the position a wealth of knowledge and an array of experiences in the mining industry on a national and global level,” Orway said. “His expertise in technology, global strategy and leadership combined with his strong operational experience in the mining industry, make him ideally suited to accelerate our remote optimisation consulting solution (MillROC) to the mineral processing industry.”

MillROC, a joint venture project between Orway Mineral Consultants and Process IQ, is focused on delivering a remote optimisation consulting service for the mineral processing industry. The cloud-based system is initially focusing on comminution circuits.

“The Orway IQ Board feels Marnu’s vision for our company leverages our strong digital foundations, embraces an innovation mindset, builds on our customer-centric culture and invests in the capability of our people,” the company said.

Weir Minerals targets customer ‘pain points’ with integrated solutions teams

Weir Minerals says its integrated solutions teams are combining experience from comminution to tailings, from chemistry to hydraulics, to deliver reliable solutions that solve its customers’ most frustrating pain points.

Since brothers James and George Weir founded what would become the Weir Group with their 1871 invention on the Weir boiler feed pump, engineering expertise, the company says, has been the driving force of its success.

“For almost 150 years, Weir has built its business on the principle that if something’s worth doing, it’s worth doing right and to do something right on a mine, you need the right team,” it said.

This is where the company’s integrated solutions teams come in, which combine technical expertise, local access and global knowledge to optimise mining companies’ entire process, according to the company.

John McNulty, Vice President of Global Engineering and Technology for Weir Minerals, says the industry needs integrated solutions now more than ever.

“With this approach, we continually listen to our customer’s pain points and identify ways in which we can improve their process,” he said. “Integrated solutions also aligns closely with the Weir Group’s sustainability strategy.

“We often talk to our customers about the challenges they face in terms of energy consumption, water usage and waste, and brainstorm ways in which we can help reduce their environmental impact. In this current climate, this approach is absolutely critical.”

When confronted with a problem that requires more than a single piece of equipment, Weir Minerals draws on its integrated solutions teams, made up of process engineers, design engineers, product experts, materials scientists, supply chain and logistics experts, as well as local sales teams who know the customer’s site.

These multi-disciplinary teams ensure a problem is considered from all perspectives, identifying potential issues and opportunities to optimise the circuit with upstream and downstream benefits, according to Weir Minerals.

With almost 10,000 employees operating in more than 50 countries, Weir Minerals can build teams with experience working in every kind of mine and quarry, in environments ranging from Canada’s frozen oil sands region and Indonesia’s rain-prone coal mines to remote deserts in Chile, Mongolia and Australia.

“As well as optimising equipment to provide maximum efficiency and wear life in any given situation, the integrated solutions team’s expertise allows them to tailor solutions that can be flown onto site when the roads freeze in the winter, prevent crocodiles climbing onto floating equipment, and utilise waste products like tailings as a resource,” the company says.

Seda Kahraman, a Regional Process Engineering Manager for Weir Minerals, says the company believes nothing is ‘impossible’, with engineers continually looking for better ways of doing things.

“Our team is made up of specialists each possessing different process systems’ expertise including, but not limited to: troubleshooting, designing tools and process simulation programs,” he said. “We combine this wealth of knowledge to deliver innovative solutions that address our customers’ varied needs.”

The key to Weir Minerals’ integrated solutions approach is the entire team of experts collaborating to identify all root causes of a customer’s challenge, considering all the contributing factors – which is where Weir Minerals’ interdisciplinary expertise is so important, it says.

The team perform process audits during site visits to identify bottlenecks and then, using flowsheets, mass balances, 3D layouts, and feasibility studies, advise on the most appropriate solution for the customer to not just resolve the problem they came to Weir Minerals with, but to optimise their process to save energy, reduce water waste or increase capacity, and ultimately save the customer money.

Metso and Outotec establish business areas and leaders ahead of merger completion

With Metso and Outotec having recently cleared one of the final remaining hurdles towards merging the two companies, the future Metso Outotec Board of Directors has laid out the planned company structure and related executive team appointments.

The nominations will become effective after the closing of the partial demerger of Metso and the combination of Metso’s Minerals business and Outotec, which is currently expected to take place on June 30, 2020, subject to receipt of all required regulatory and other approvals, including competition clearances – which the companies made significant headway on recently.

The companies said: “Combined, the future Metso Outotec will be a forerunner in sustainable technologies, end-to-end solutions and services for the minerals processing, aggregates, metals refining and recycling industries globally. The new organisation is designed to leverage the strengths and expertise of both companies.”

Metso Outotec will consist of the following six business areas:

  • Aggregates, providing crushing and screening equipment for the production of aggregates;
  • Minerals, providing equipment and full plant solutions for minerals processing, covering comminution, separation and pumps;
  • Metals, providing processing solutions and equipment for metals refining and chemical processing;
  • Recycling, providing equipment and services for metal and waste recycling;
  • Services, providing spare parts, refurbishments and professional services for mining, metals and aggregates customers; and
  • Consumables, providing a comprehensive offering of wear parts for mining, metals and aggregates processes.

The boards have also made some significant decisions on the key personnel that will lead these business units.

Markku Simula will become President of the Aggregates business unit. Simula currently serves as President, Aggregates Equipment at Metso.

Recently appointed Metso Mining Equipment President, Stephan Kirsch, will become President of the combined Minerals business area.

Jari Ålgars, currently CFO at Outotec, will become President of Metals.

Uffe Hansen, who is currently President of Recycling at Metso, will become President of Recycling at Metso Outotec.

Metso’s Sami Takaluoma will retain his President of the Consumables business area post at the new merged entity.

Markku Teräsvasara, who currently serves as the President and CEO at Outotec, will take on the President, Services and Deputy CEO role at Metso Outotec.

In addition to the business area president appointments, the following function heads and executive team members have been appointed:

  • Eeva Sipilä, CFO and Deputy CEO. Her appointment was announced on July 4, 2019. She currently serves as the CFO and Deputy CEO at Metso;
  • Nina Kiviranta, General Counsel. She currently serves as General Counsel at Outotec;
  • Piia Karhu, Senior Vice President, Business Development. She currently serves as Senior Vice President, Customer Experience at Finnair. She will join the company on July 1, 2020; and
  • Hannele Järvistö, Senior Vice President, Human Resources (interim). She currently serves as Senior Vice President, Human Resources (interim) at Metso. “This appointment is valid until a new position-holder has been selected and will start in this role,” the company said.

All the function heads and executive team members will report to Metso Outotec’s future President and CEO, Pekka Vauramo (pictured), the company said.

Reflecting on these changes, Vauramo said: “Above all, Metso Outotec will be strong in sustainability. Our extensive combined offering for minerals processing, from equipment to a broad range of services, will help our customers improve their profitability and lower their operating costs and risks, while at the same time reduce the consumption of energy and water.

“We at Metso Outotec understand our customer’s world and the daily challenges they face. Together, we will partner for positive change.”

Kwatani problem solving doubles diamond mine’s screening feed rate

Kwatani says it has helped a South Africa diamond operation double the feed rate of its degrit screen through the use of one of its customised solutions.

The customer was operating several multi-slope screens to dewater product between 0.8 mm and 5 mm in size, before it was treated by dense medium separation (DMS). However, the screens were causing a severe carry-over of water onto the conveyor belt to the DMS, according to the South Africa-based OEM.

“The feed rate on each screen was being limited to about 250 t/h,” Kwatani CEO, Kim Schoepflin, said. “We tackled this by designing and manufacturing a customised multi-slope screening machine to fit the customer’s existing footprint.”

Schoepflin said Kwatani’s replacement was able to double the feed rate to about 500 t/h, with minimal water carry-over.

As a result of the success of this unit, the customer requested Kwatani to replace the whole bank of screens, it said.

In another contract, a customer asked for assistance with underperforming screens that could not deliver the original design parameters. They also wanted to increase the tonnage throughput by 17%, according to the company.

“We conducted a careful evaluation in collaboration with the customer, and came up with an innovative and economical solution,” Schoepflin said. “Simply replacing the existing screens with Kwatani’s new larger screens would have been costly and time consuming, so we decided instead to replace the screen’s existing gearboxes.”

The replacement gearboxes delivered greater vibration, but without exceeding the output torque the existing motors driving the gearboxes could provide.

“Drawing from our portfolio of locally designed and manufactured exciter gearboxes, we were able to implement this solution very quickly,” she said. “The two new exciter gearboxes were delivered to site and were in operation within two weeks – successfully and immediately increasing the screen’s throughput.”

The benefits to the customer did not stop there, according to Schoepflin. The newly optimised operating parameters meant the material bed depth was lower, so the drive motors drew a lower amperage and reduced the cost of power consumed.

“Our customised screening and feeding solutions – developed by our in-house team of experienced mechanical engineers and metallurgists – are based on consultation with each customer,” she explained. “The result is a design that delivers the optimal processing performance and tonnage at the lowest cost of ownership.”

Bunting ups the mineral separation ante with ElectroStatic Separator

Bunting has launched a new separation device that, it says, significantly broadens the company’s separation capabilities, opening new opportunities for optimising mineral reserves.

The development of the ElectroStatic Separator comes in response to enhanced material separation requirements in the recycling, plastics and minerals industries, Bunting said.

It uses tungsten electrode wire to generate electrostatic charges to separate dry liberated particles, exploiting the difference in electrical conductivity between various materials in a feed material to produce a separation.

“The separation depends on a number of key material characteristics including conductivity, moisture content and size range,” Bunting said. “In many applications, often due to the fine particle size, the ElectroStatic Separator is the only technology that enables a separation (eg -2 mm granulated cable scrap).”

The technology also replaces less environmentally friendly separation processes such as froth flotation in mineral processing applications (eg separation of rutile from silica sand), according to the company.

In operation, the technology uses the difference in conductivity between insulators (eg plastics) and conductors (eg copper and aluminium) to obtain a separation on an earthed roll. A vibratory feeder evenly feeds a material mix onto the top of a rotating earthed metal roll, with the rotating roll transferring the material under an electrode bar inducing an electrostatic charge. Non-conductive materials (ie insulators) adhere to the earthed roll via an image force, while the conductors lose their charge quickly and, under centrifugal force, are discharged, according to Bunting. This enables a separation.

ElectroStatic Separators provide material segregation in plants processing minerals, producing plastics, and recycling secondary metals, the company says, with differences in conductivity found in recycled materials and minerals sufficient to enable excellent levels of separation.

“Indeed, this includes the separation of metals with different conductivity,” the company said.

The mineral processing industry commonly uses ElectroStatic Separators in conjunction with high intensity magnetic separators such as Bunting’s own Rare Earth Roll Magnetic Separator and Induced Magnetic Roll Separator, it said. This combined separation process is used when processing beach sands, for example.

The new separator is available as a single or double staged system in feed widths of 500 mm, 1,000 mm and 1,500 mm to suit a specific application.

The Bunting Centre of Excellence in the UK includes a laboratory-scale model of the new ElectroStatic Separator, according to the company.

Metso Minerals orders hold up in face of COVID-19 impacts

Metso’s orders and sales held up in the March quarter in the face of the onset of COVID-19, with the company saying activity in its mining equipment business continued in line with expectations.

The company posted a 5% year-on-year increase in orders received to €1.07 billion ($1.15 billion), while its sales were unchanged at €832 million. Its operating profit dropped to €73 million, from €100 million a year earlier, but it was still able to generate free cash flow of €78 million during the three-month period.

Metso said the measures taken to prevent the spread of COVID-19 started to have a material impact on its businesses and financial performance only towards the end of the March quarter. It was around this time that the company outlined its COVID-19 strategy.

“In February, the businesses and operations in China were affected but this impact was offset later, thanks to a fast ramp-up in March,” it said. “Quarterly orders from China were higher year-on-year, while the drop in sales will take longer to catch up.”

Lockdowns were introduced in mid-March in other countries, with the restrictions in India having had the biggest impact on Metso, it noted. There was some positive news, with, as of mid-April, operations in India and South Africa being permitted to ramp up.

In terms of customer demand, Metso said, from mid-March, the biggest COVID-19-related impact came from its aggregates equipment business, where customers and distributors significantly reduced their investments.

The mining equipment business, however, continued in line with expectations.

“The importance of the mining operations for many countries has been visible in the continued healthy demand for spare and wear parts,” Metso said, while noting that restrictions relating to travel and workforce mobility have had an impact on mining services by limiting service work carried out at customers’ mines.

Its Minerals business saw a 6% year-on-year jump in orders received in the March quarter, while services orders rose 5%. Growth of 8% in equipment orders was supported by the acquisition of McCloskey, it said, noting that mining equipment orders increased slightly against a high comparison period, “highlighting the healthy market activity.”

Metso reaffirmed that its partial demerger and the transaction to create Metso Outotec and Neles continue to progress according to plan, with closing currently expected to take place on June 30, 2020, subject to regulatory approvals.