Tag Archives: Minerals Research Institute of Western Australia

Hyperspectral imaging technology tested at Western Australia gold, iron ore mines

The University of Queensland and research partners Plotlogic Pty Ltd have developed new automated mining technology that, they say, will facilitate automation of the mining process while improving operating efficiency.

The research has shown how artificial intelligence can use scans of the mine face to almost instantly identify valuable minerals and waste rock, allowing each stage of the mining process to be planned more effectively in advance, UQ said.

Professor Ross McAree, Head of School of Mechanical and Mining Engineering from UQ, said the new technology used visible and infrared light to automatically classify materials.

“Each mineral has its own characteristic response to different wavelengths of light, so by scanning the mine face with our system we can map out the minerals present in the rock and their concentration (ore grade) almost instantaneously,” Professor McAree said.

This real-time mapping allows the mining process to be planned out before digging even starts, according to the researchers.

“Beyond this immediate efficiency gain, the enhanced ability to recognise ore grade could also underpin future autonomous mine systems,” Professor McAree said. “Machines equipped with this imaging system would be able to recognise ore grade as they were excavating it. Linked to artificial intelligence, this could allow automated machinery to operate in the mine environment, removing workers from hazardous parts of the mining process.”

Real-time ore grade classification at the mine face could also enhance mine scheduling and improve resource recovery and minimise processing waste, the researchers claim.

The project was supported by the Minerals Research Institute of Western Australia (MRIWA), with MRIWA CEO, Nicole Roocke, saying investment into research like this helped position Australia’s minerals industry at the leading edge of technology development.

“This imaging approach could prove particularly valuable where rapid extraction and consistency of ore grades could provide a competitive advantage to those leading the way,” Roocke said.

The project, which was conducted in 2018-2019, had a total grant value of A$850,850 ($653,322). In addition to MRIWA, UQ and Plotlogic, CITIC Pacific Mining and AngloGold Ashanti were also involved, hosting trials at the Sino iron ore and Tropicana gold mines, in Western Australia, respectively.

It was based off the OreSense® prototype system, developed to meet the needs of the research project, as well as offering a commercial pathway for early industry adoption of the technology.

“The prototype delivers a system capable of acquiring, processing and classifying hyperspectral data in the field and in real time, mapped to terrain and geo-referenced for integration with mine maps,” the project partners said. “In order to be the most general and applicable to all minerals, the hyperspectral imaging capabilities cover the visible to short wave infrared spectrum (400-2,500 nm).

“The surveying capabilities of the system rotate in more than one axis to perform face scans and build a 3D data-cube from two individual line-scanning hyperspectral sensors. The system spatially and spectrally fuses the data cubes from the two sensors to provide a single data-cube for an entire scene. The system also performs on-board corrections and post-processing of the hyperspectral data to support real-time ore grade classification.”

The prototype used on site during the trials consisted of a sensor head with LiDAR and hyperspectral cameras, a pan-tilt unit and a GNSS receiver among other elements (see photo above).

CSIRO senses a new way forward for mineral exploration

A project focused on the Capricorn region of Western Australia has indicated mining companies could more accurately pinpoint reserves of valuable minerals using a new water-tasting approach developed by the national science agency, CSIRO.

In research supported by the Minerals Research Institute of Western Australia (MRIWA), broad “haloes” of altered water chemistry around known deposits of gold, uranium, and other minerals were discovered where interaction with the ore systems had left distinctive traces in the water.

CSIRO Researcher, Dr Nathan Reid, led a team of scientists analysing samples of groundwater from the Capricorn region, where layers of sediment and weathering are believed to hide potential ore deposits from view.

Dr Reid explained: “Groundwater penetrates through covering sediments and interacts directly with the bedrock, dissolving trace amounts of the minerals present into solution. By sampling those waters, our instruments can essentially ‘taste’ the geology they have come into contact with.”

Where the underlying rocks contain a valuable ore deposit, the chemical flavour of that mineralisation extends much further than the concentrated mineralisation itself, according to Dr Reid, comparing this with a teaspoon of salt making a whole glass of water taste salty.

These haloes of altered water chemistry could help geologists identify areas where other ore deposits might still lie hidden below the surface, helping to focus mineral exploration in the right areas, according to CSIRO.

Chemical anomalies identified in groundwater from sediment-covered areas of the study region have already stimulated further exploration investment from companies seeking to identify undiscovered mineral deposits, according to CSIRO. Industry sponsors of the project include Marindi Metals, Thundelarra Resources, Sandfire Resources, Northern Star Resources, MMG, Gascoyne Resources, Auris Metals, RNI, Erongo Energy and Independence Group.

MRIWA CEO, Nicole Roocke, said the innovative work in this project by scientists across CSIRO, the Centre for Exploration Targeting and Curtin University will play an important role in encouraging mining industry investment in under-explored areas of Western Australia.

“This work demonstrates the exciting mineral exploration potential remaining in the Capricorn, and we anticipate this innovative approach to mineral exploration will stimulate renewed interest in many similar areas of Western Australia where we know richly endowed geology lies buried below younger rocks,” she said.

“By supporting this fundamental research, the Western Australian Government is helping to provide the mineral exploration industry with the tools it needs to invest in identifying the next generation of ore deposits in this state.”

The technical report summarising the findings of this research can be found here.