Tag Archives: niobium

NioCorp progresses to first phase of Elk Creek EPC contracting with Zachry Group pact

NioCorp Developments Ltd has executed a contract with Zachry Group to develop a cost for the surface facilities associated with NioCorp’s Elk Creek critical minerals project in Nebraska, USA.

The contract represents the first phase of engineering, procurement and construction (EPC) contracting for the $1.2 billion project, the company says.

NioCorp had previously selected Zachry, one of the world’s leading turnkey engineering, construction, maintenance, turnaround and fabrication companies, as its EPC firm for the project’s surface facilities.

“We are very pleased to take this important next step with Zachry as it positions NioCorp to advance to a construction start following receipt of sufficient project financing,” Mark Smith, Chairman and CEO of NioCorp, said. “Zachry is a highly respected company with an excellent track record of success in large projects such as ours, and I am pleased to continue our partnership with Zachry as we work together to bring the Elk Creek Project to commercial reality.”

Scott Honan, NioCorp’s Chief Operating Officer, added: “Zachry has a large craft workforce and a strong presence in Nebraska. Together with our long relationship with the Zachry team, this makes for a great fit with the Elk Creek project. Having spent time at Zachry’s offices and multiple project sites, I am confident that Zachry can execute their scope of work on our project in a safe, timely, and cost-effective manner.”

Ralph Biediger, EPC President, Zachry Group, said: “We are excited to work with NioCorp to support the development of critical minerals that will help the United States transition to a lower-carbon economy. We look forward to bringing our decades of EPC experience to bear on this vitally important project and continuing our long-term presence in Nebraska.”

A 2022 feasibility study outlined a project able to process 36.7 Mt of of ore over a 38-year life of mine to produce 171,140 t of niobium in the form of ferroniobium, 3,676 t of Sc2O3 and 431,793 t of TiO2. Rare earths have been added to the mineral resource, and the indicated resource contains 632,900 t of total rare earth oxides.

Boston Metal to test molten oxide electrolysis tech on mining waste in Brazil

Boston Metal, a global metals technology solutions company, says it will deploy its molten oxide electrolysis (MOE) platform technology to recover high-value metals from mining waste in Brazil.

The company’s wholly-owned subsidiary Boston Metal do Brasil and major Brazilian refined tin producer Mineração Taboca S.A. have signed an memorandum of understanding (MoU) to explore the use of Boston Metal’s MOE technology through a collaboration that, it says, seeks to advance the efficiency of metals production while demonstrating a sustainable and profitable solution for the mining industry. Mineração Taboca S.A produces not only refined tin, but other industrial minerals including niobium and tantalum.

Process development for the MoU will be performed at Boston Metal do Brasil, which opened in August, with construction underway on facilities in the municipality of Coronel Xavier Chaves near São João del Rei, Minas Gerais.

The company’s patented MOE technology uses electricity to selectively extract valuable metals from complex, low-concentration materials that are currently considered waste. This enables miners to reduce the financial and environmental liabilities of slag, by leveraging this natural by-product of metal production to create new revenue streams, Boston Metal says. Using renewable electricity, MOE can also be applied to convert all grades of iron ore into emissions-free steel, according to the company. Once this groundbreaking technology becomes commercially available by 2026, steel producers will be able to cost-effectively achieve net zero scope 1 and 2 emissions and meet growing global demand for green steel.

Itamar Resende, President of Boston Metal do Brasil, said: “MOE provides the metals industry with a more efficient, lower cost and greener solution to produce a variety of metals and alloys from a wide range of feedstocks. We’re looking forward to further developing our high-value metals business and demonstrating the efficiency of our MOE solution to transform mining waste into sources of revenue.”

Boston Metal expects commercialisation of the MOE technology for high-value metals to take place in 2023.

Boston Metal looks to disrupt and decarbonise steel and iron ore industries

Boston Metal is looking to decarbonise the steel-making sector at the same time as helping iron ore producers with their Scope 3 emissions dilemma.

The concept of ‘green steel’ has been widely discussed over the last few years, with LKAB, SSAB and Vattenfall’s HYBRIT project being the most cited case study, thanks to both its advanced stage of development – it has already produced fossil-free steel on a trial basis – and its revolutionary way of introducing hydrogen in place of coke as the iron ore reduction method in the steel-making process.

SSAB and LKAB are leveraging HYBRIT to completely transform their production processes: SSAB is building new hydrogen-based steel making facilities able to match its current base of 8.8 Mt/y of steel by 2030 and LKAB is moving from iron ore pellet production to direct reduced iron (DRI) in line with this.

Tadeu Carneiro, Chairman & CEO of Boston Metal

The ambitions of such a project are impressive, but can such a green steel-making process be applied to the circa-1,900 Mt of steel currently being produced for the world market?

The answer is no, according to Tadeu Carneiro, Chairman & CEO of Boston Metal.

He expands on this: “There are four ways of reducing iron oxides into a metal for steel-making. One is through the use of carbon; another way is through using another metal as a reductant, which is currently not feasible; the third one is with hydrogen, which is possible – as HYBRIT has shown – but is limited to premium iron ores; and the last is through our solution.”

The solution in question is – like HYBRIT – a green option, but – unlike HYBRIT – is applicable to all iron ores, regardless of grade, according to Carneiro.

Boston Metal’s process, which it calls Molten Oxide Electrolysis (MOE), works by adding iron ore to an electrolytic cell and passing electricity through said cell. The electricity both breaks the bonds of the iron oxides present, as well as heats up the whole batch within the cell, creating molten iron that sinks to the bottom of the cell ready for collection (tapping).

During the bond breaking and heating process, MOE produces oxygen as a by-product, with the resultant oxides forming the electolyte and remaining in said electrolyte (floating above the liquid iron).

“Because it is molten, the iron gets separated from the electrolyte and sits in the bottom of the cell,” Carneiro said. “As the molten iron is heavier than the electrolyte, the impurities float to the top and can be tapped separately.”

So, not only do companies using MOE get a molten iron product, they also get a slag by-product that can be used in various applications in the construction industry – all without using coking coal or coke.

“In traditional blast furnace-based steel making, you have to pelletise or sinter the iron ore, you need to process coking coal into coke and you then have to mix the two in the blast furnace and blow air to get pig iron,” Carneiro explained. “This pig iron contains around 4% carbon, which needs to be burnt off through, typically, a process in the basic oxygen furnace to get molten iron.”

Boston Metal’s MOE process gets to this same point using just iron ore and electricity, according to Carneiro.

“All of this is replaced by a battery of cells that, when assembled in significant numbers, can compete with blast furnaces in terms of molten iron capacity,” he said.

Carneiro expanded on what he meant by ‘significant numbers’, offering up an example of 300 MOE modules assembled in two lines of 150 able to produce 1 Mt of steel.

And all of this is in an incremental capital expenditure range within the millions of dollars, instead of the billions of dollars often required to build a traditional steel-making plant.

This puts a green process in the reach of not only steel-makers but iron ore producers, according to Carneiro.

“If you have green electricity at an iron ore mine, you can bring the cells there, melt the iron and ship a metallic product to steel-makers,” Carneiro said.

This pure iron product can be remelted elsewhere and processed into flat and long steel products for the automotive and construction industries.

“This represents a higher value-added product for iron ore miners, enabling them to ship a product that is 40% lighter in terms of weight,” Carneiro explained.

Finding a ‘green’ end-user that brings down a miners’ Scope 3 emissions while holding a molten iron ore product is a lot easier than finding one when shipping iron fines, concentrate or sinter: hence the reason why iron ore miners’ Scope 3 emission goals appear a lot less ambitious than the Scope 1 and 2 targets within their control.

It is no wonder BHP and Vale have been early backers of Boston Metal.

It sounds too good to be true, and there is a reason for that.

From speaking to Carneiro, the company could start producing molten iron through the chosen method today – not at a scale the steel-industry would yet consider commercial, but at a pilot scale at least.

For the commercial process to be considered green, the company would need renewable electricity to do this; and lots of it.

Carneiro doesn’t shy away from this, explaining that MOE will require 4 MWh of electricity per tonne of steel to work at such a scale. This is the equivalent of up to 500 MW for a 1 Mt/y molten iron plant.

The incumbent process Carneiro and his US-based team are looking to take market share from requires 5.5-6 MWh of energy per tonne of steel, while the electric arc furnace (EAF) method of making steel – which uses predominantly scrap metal – has a much smaller electricity requirement.

“If you had 2 billion tonnes of scrap to be melted, the EAF route is the best way to make steel, hands down,” Carneiro admits. “The problem is you don’t have such scrap availability and, in order to increase supply, you would need lots more steel coming from iron ore.”

For reference, the HYBRIT process is expected to require 600 MW of hydrogen electrolyser capacity to 2025 to get LKAB to the 1.3 Mt/y sponge iron (DRI) mark.

Yet, scrap steel is not the only thing in short supply currently. Green electricity is far from abundant, with only the likes of Quebec (hydro power capacity) and some Nordic countries having a plentiful supply – a fact Carneiro acknowledges.

“If you don’t believe that green electricity will be available, abundant, reliable and cheap in the future, you can forget about the MOE process,” he said. “But then you also have to forget about a lot of other processes that are set to use green electricity and the massive amounts of investment the green energy space is seeing on an annual basis.

“Society has decided to go electric and to go electric in a green way, so it is only reasonable to expect that, in the future, electricity will be all of this.”

Carneiro is planning for such a transition, with his company in the process of commissioning a full-size industrial MOE cell at its Woburn, Massachusetts headquarters. This could be ready as early as next month.

It follows a trial of a pilot cell at Brazil-based ferroniobium producer CBMM’s production plant in Araxá, Brazil, where the technology was able to use the same process to turn niobium ore into high-value ferroniobium-based products.

“We were able to prove out the process with CBMM on a smaller scale, which has given us the confidence to make a much bigger cell.”

The company plans to use this bigger cell and, through a subsidiary in Brazil, take advantage of other opportunities to extract value from mining waste using the MOE technology. This could see Boston Metal assemble a battery of MOE cells to manufacture some 5,000-10,000 t of high value-added metals.

While this is deemed ‘pilot scale’ for steel producers, it is sizeable for those producing high value-added products such as niobium, vanadium, tantalum, chrome and others, Carneiro said. And the project will only aide the company’s steel-making ambitions.

“By developing the cell for these high value-added metals, we are finding lots of the answers for the steel-sized cells as well,” he said.

Such groundwork today is preparing the company for a time when steel-makers and iron ore miners have assessed the green electricity landscape and are ready to invest in such technology.

“All the leading steel-making companies have made pledges to be carbon neutral by the 2050s,” Carneiro said. “This means they need to phase out carbon reduction by the mid- to late-2030s. By this point in time, we will be ready to offer our solution on a commercial scale, allowing them to take advantage of the abundance of iron ores – low and high grade – around the world.”

Boston Metal to trial molten oxide electrolysis on CBMM ore

CBMM, a leading supplier of niobium products and technology, and Boston Metal have signed a strategic partnership to trial Boston Metal’s molten oxide electrolysis (MOE) technology for the production of niobium products.

Together, the companies will deploy the MOE technology at CBMM’s production plant in Araxá, Brazil, with first commissioning expected later this year.

CBMM, as of 2016, produced 90,000 t/y of ferroniobium equivalent, with plans to increase this further. Its mine in Araxá contains pyrochlore, a mineral that hosts niobium, among other constituents, which CBMM turns into niobium-based products.

Boston Metal said: “With this partnership, CBMM and Boston Metal will seek to further advance niobium production efficiency and provide innovative material transformation solutions. CBMM’s leadership in the niobium market is a direct result of decades of research and development investment in niobium processing and its focus on collaborating with customers and partners across the globe to develop better materials.”

Boston Metal, based in Woburn, Massachusetts, has developed the patented MOE technology as a platform for the production of a wide variety of alloys. The MOE technology uses electricity to reduce metals from their oxide form, such as CBMM’s niobium oxide containing raw materials, into high-quality, molten metal products.

At its Massachusetts headquarters, Boston Metal is developing MOE for the production of metals and alloys, and, with this partnership, MOE hardware and Boston Metal personnel will be deployed at CBMM’s headquarters in Araxá, enabling the teams to collaborate closely, Boston Metal said.

Tadeu Carneiro, Chairman and CEO of Boston Metal, said: “The MOE technology that is being developed by the team at Boston Metal promises a new era in metallurgy and, in CBMM, we found a partner that shares our fundamental commitment to technology leadership.”

Cementation and Nordmin get the honours at NioCorp’s Elk Creek project

NioCorp Developments says Cementation USA, part of the Cementation Americas Group, has been selected as the lead engineering, procurement, and construction (EPC) contractor for the underground aspects of the proposed Elk Creek Superalloy Material project in Nebraska, USA.

In addition, the company announced that it intends to engage The Nordmin Group of Companies to provide engineering services for the project.

Based in Sandy, Utah, Cementation is a mining- and minerals-focused group of companies, delivering both underground and surface solutions for mines and downstream minerals processing facilities worldwide.

Negotiations towards a formal EPC agreement between NioCorp and Cementation will be initiated in the near future, according to NioCorp.

“Cementation provides broad expertise in both mine construction and mine engineering, and has a solid track record in safely executing on mine development projects around the world,” Mark A Smith, CEO and Executive Chairman of NioCorp, said. “We look forward to working with their team to build one of the few greenfield underground mine developments in North America, and to a long and mutually beneficial relationship.”

The superalloy materials project in southeast Nebraska will produce niobium, scandium, and titanium: superalloys that make steel lighter and stronger, can, when combined with aluminium make alloys with increased strength and improved corrosion resistance, and is a key component of pigments used in paper, paint and plastics, respectively.

Cementation’s Robert Gripper, EVP Contracting, USA, said: “It’s encouraging to see an owner embrace the EPC approach. We understand that mine owners are looking for engineering that adds value through the use of best practices and accounts for constructability and operability, and a construction team that is aligned with the engineer and owner. Such an approach lends itself to this.”

Nordmin, meanwhile, has demonstrated its expertise in designing an improved mine plan for the project, along with an innovative interpretation of the geologic resource and a sound plan for managing bedrock groundwater associated with the mine, according to NioCorp.

NioCorp said: “The company anticipates that any significant additional work on the project by Nordmin will be contingent on obtaining additional project financing, if and when available.”

Nordmin proposes artificial shaft freezing for NioCorp’s Elk Creek underground project

The Nordmin Group of Companies has put forward the idea of using artificial ground freezing technology at NioCorp’s Elk Creek critical minerals project in Nebraska, US, as part of a plan to accelerate the sinking of the production and ventilation shafts for the underground mine.

Nordmin said use of this technology was “technically feasible” and could assist in controlling the inflow of water encountered during shaft sinking operations, according to NioCorp.

“The technology may also improve productivity during shaft sinking operations, and eliminate the need for substantial dewatering operations prior to the onset of shaft sinking,” NioCorp added.

Elk Creek is currently envisaged as a 2,760 t/d underground mine using long-hole open stoping with backfilling. The mine is expected to cost close to $1 billion to build and produce 7,055 t/y of ferroniobium, 103 t/y of scandium oxide and 11,445 t/y of titanium dioxide over a 32-year life.

This is based on a probable reserve base of 31.7 million tonnes at 0.79% Nb2O5, 71.6 g/t Sc and 2.81% TiO2.

In addition to putting forward the alternative ground freezing technology option, Nordmin also confirmed bedrock water encountered during mining operations could be handled without the 53 km waterline to the Missouri River included in the revised feasibility study from last year.

This could significantly reduce the time required for permitting the mine, NioCorp said.

“Removing the project’s plans for a waterline to the Missouri River eliminates the project’s need for an additional Section 404 permit from the US Army Corps of Engineers,” the company said.

This permit would have triggered the need for an environmental assessment under the National Environmental Policy Act, a process that can take months or more to complete, according to NioCorp.

The waterline removal also eliminates the need for Elk Creek to secure a National Pollutant Discharge Elimination Permit from the Nebraska Department of Environmental Quality.

NioCorp CEO and Executive Chairman Mark Smith said he was particularly pleased that “Nordmin clearly focused its efforts on proposing a mine design that maximises value and minimises environmental impacts”.

While the total upfront capital cost of the waterline and mine dewatering infrastructure, including contingencies, added up to $127.1 million in the latest feasibility study, NioCorp said investors could not simply subtract this amount from the upfront cost.

“A variety of factors beyond underground mining operations may impact the overall economics of the Elk Creek project and these factors may involve higher or lower upfront capex than was previously estimated in the 2017 revised Elk Creek feasibility study,” NioCorp said.

Chief among these is the additional incremental project capital needed for the artificial ground freezing technology not previously included.

NioCorp said its immediate plans involve fully evaluation Nordmin’s designs for the underground mine and initiating detailed engineering for the surface portions of the project as funds become available.

Late last year, the Nebraska government granted conditional approval for a major tax incentives package for Elk Creek.