The flagship unit of MacLean Engineering’s Ore Flow suite is now ready to join the equipment manufacturer’s battery-electric fleet at Newmont Goldcorp’s Borden project, in northern Ontario, Canada.
The MacLean Blockholer is a “versatile warrior”, according to Viv Bhatt, Product Manager – Ore Flow, Drill & Blast at MacLean Engineering.
“We call it a Blockholer, you may know it as a secondary reduction drill, but either way it comes down to the same thing…a critical tool for making sure the ore flows in underground mining,” Bhatt said, adding that there are more than 125 success stories from across the globe that attest to this.
MacLean’s battery-electric fleet at Borden, billed by its owners as being the world’s first all-electric mine upon start-up (expected later this year), has been steadily growing over the past year or so. The company said back in March that the delivery to Borden of the Blockholer would see its fleet hit 15 units, comprised of six bolters and nine utility vehicles.
On the Blockholer specifically, Bhatt said: “Whether it’s a low hang-up in a drawpoint, or oversize rock on the ground that’s too large for scoops to handle and too disruptive to get rid of with concussion blasting, it’s your secondary reduction rig that solves the problem and ensures that production isn’t held up.
“And when it’s not tasked with this mission, it can be put to use for ancillary drilling for mine services.”
Bhatt listed off five reasons why the self-contained blockholer drill could become the workhorse of hard-rock underground mining fleets:
- “Improved safety – In dealing with low hang-ups, runs of muck remain a potential risk. Remote-controlled drilling and loading explosives from a safe distance is a much safer option than manual loading of concussion blasts, and this is precisely what Blockholer drills deliver;
- “Improved production – One mine went from 700 tons per day (635 t/d) off a mucking horizon to 3,000 tons/d after the introduction of a Blockholer. Another had a pillar blast break poorly and they were unable to make 50% of schedule prior to acquiring a Blockholer. (In this instance the unit was paid for entirely with the savings in secondary blasting explosives.) Also, pulling the wrong boxhole because of a hang-up or because it is choked with large muck results in improper draw leading to dilution and/or loss of metal vis-a-vis calculated reserves;
- “Reduced Scooptram maintenance costs – The safe and efficient treatment of oversize improves scoop availability (ie it increases tonnage) and, at the same time, it reduces parts costs especially for major items in the drive train such as planetary gear boxes, drive shafts, and differentials, and in the mucking action for cylinders, linkages, and buckets;
- “Reduced blasting powder and rehab costs – Over and above the safety benefits, self-contained blockholer drills deliver substantial cost savings with regard to the use of secondary blasting powder, as well as reduced detonation effects on ventilation air. Elimination of concussion blasting in drawpoint throats (especially with powder packs wedged between a large chunk and the brow) also significantly reduces the need for brow repair and re-bolting, as well as damage to mine services like air lines, water lines, power cables, ventilation doors, vent ducting and fans”, and;
- “Versatility for mine support – Blockholers can also efficiently and safely perform mine service support functions such as drilling for the installation of ventilation doors, dams, fans, pipelines, power cables, etc. This is particularly beneficial when installing or repairing services in remote or high-traffic areas of a mine.”
And, of course, the Blockholer is equipped with MacLean’s latest EV Powertrain, providing zero emissions, low noise and low heat operations, Bhatt concluded.