Tag Archives: ore sensing

Weir’s ore characterisation work shifts gears to value generation loop

Chris Carpenter, VP of Technology for Weir ESCO®, is on a crusade to educate the mining industry on the importance of orebody knowledge.

As an executive with more than 35 years of experience and 40 patents to his name, he has heard numerous stories about “sub-optimal operational decisions” being made at mine sites due to a lack of information.

Through an ore characterisation project under development within several teams at Weir, Carpenter shared the company is focused on developing cost-effective solutions to provide this information in real time.

He is, however, aware that the mining sector, as a whole, needs convincing.

“I can tell you that many of our customers do not yet acknowledge the full value of what we are looking to provide the sector,” he told IM.

This is changing, with industry studies on the correlation between poor orebody knowledge and negative financial impacts and risks in the mine development process coming to light – IMDEX, the Mineral Deposit Research Unit and the Bradshaw Research Institute for Minerals and Mining at the University of British Columbia and Ideon Technologies are, for instance, currently engaged on such a study.

In announcing the study, IMDEX Chief Geoscientist, Dave Lawie, hit on a similar theme to Carpenter: “For the mining industry to adopt this technology, it must have clear evidence of the financial impacts and risks of poor or no orebody knowledge and a way of assessing the most efficient methods of collecting, analysing and optimising it.”

What “this technology” is remains open to debate, with many pre-concentration and ore sorting technologies continuing to sprout up among fertile innovation soil in the mining sector.

ESCO and Carpenter believe this technology – at least in a base metals and iron ore application context – has roots in Sustainable Development Technology Canada (SDTC), an arm’s-length foundation created by the Government of Canada to fund new clean technologies. Motion Metrics International Corp received SDTC funding back in 2020 for a project using the core innovations of hyperspectral imagery (HSI) sensors, 3D particle size distribution (PSD) analysis and machine-learning algorithms to control energy-intensive mining equipment, an SDTC backgrounder from 2020 explained.

Chris Carpenter, VP of Technology for Weir ESCO

Motion Metrics, in a separate announcement, said the 3.5-year project would lead to the design, development and deployment of a commercial mine-to-mill energy efficiency solution.

“Upon successful completion, mines worldwide will be able to order and deploy this solution, without changing their daily operations, to meet their sustainability targets while reducing their comminution costs,” it said.

University of British Columbia’s Norman B. Keevil Mining Engineering Department and several other organisations partnered with Motion Metrics for this project.

A lot has changed in the four years since this announcement, with Weir Group having acquired Motion Metrics International Corp and been incorporated into ESCO.

IM initially reported on developments of what Carpenter referred to as an “ore characterisation” project in 2022. At that time, this consisted of a BeltMetrics™ trial installation using a MOTION METRICS™ advanced imaging sensor for PSD analysis and a commercial, HSI sensor positioned above a conveyor that was directly after the crusher in a mine’s flowsheet.

When IM caught up with Carpenter in late July, he could report on not only progress with the BeltMetrics installation, but also a fixed-term trial of “ore characterisation” in a TruckMetrics™ installation.

“We have now run two different applications for the technology,” he said. “The belt monitoring trial continues to operate and has demonstrated the ability to predict SAG mill throughput based on the input ore characteristics. We also ran a very successful trial of bulk sorting using similar technology looking at the content of haul trucks. The trial monitored and analysed around 1,000 trucks and several were identified as low grade. Extensive lab testing continues as we evaluate mine ore samples to understand the capabilities of our approach. Based on our lab and field evaluations we are convinced the technology will allow us to quickly and accurately monitor grade, alteration, deportment and deleterious minerals.”

The BeltMetrics trial installation uses a MOTION METRICS advanced imaging sensor for PSD analysis and a commercial, HSI sensor positioned above a conveyor that is directly after the crusher in the mine’s flowsheet

“I would say our proof of concept work has really allowed us to now pick up the pace of investment and search for more development partners to further this technology.”

The TruckMetrics ore monitoring trial – carried out on 100-232 t-payload trucks – may pique interest here, but Carpenter says the initial product development path lies in the processing plant and on the conveyor.

“We are looking to, first, put more minimum viable products (MVPs) out in the market for belt-based solutions,” he said. “While our initial entry into this space was to look at bulk sorting – and we recognise this is still the ‘big target’ – [the] voice of [the] customer research has identified a huge need to provide plant-based systems for applications in managing stockpiles and feed grades.”

These MVPs are likely to be deployed on “development partner” sites with existing separation mechanisms downstream of the crusher – ie apron feeders – where diversions can be made based on the HSI and PSD data.

This same voice of the customer research highlighted the need for an in-pit system that could boost productivity, throughput and recovery ahead of the plant, yet the financial amount estimated for a commercial system based on the HSI and PSD sensor combination did not find favour.

“This has led to our own research into what we feel is a new-to-the-world application or modification of standard HSI,” Carpenter said. “We believe this will give us a competitive edge in the market.”

Illumination restrictions and uses have often been touted as the potential drawbacks of using spectral imaging in the ore sorting space, which IM understands is one of the areas of focus for Weir’s own R&D and lab-based testing.

But there are also other factors to consider ahead of a commercial Weir proposition – whether that is in the pit or plant – landing on the market.

“We don’t just want to be sensor salespeople,” Carpenter says. “The complexity and variety of applications will require a shift to specific solutions for our customers and the need to back that up with the aftermarket service our customers expect becoming their productivity partner.

“What we are proposing is more than just technology; it needs to be a solution that validates the value on a regular basis in a continuous loop.”

That same loop comes back to Carpenter’s and Lawie’s assessment of the industry need to acknowledge the value of such data ahead of adopting the technology.

“Fortunately, our ‘Mining technology for a sustainable future’ focus at Weir is allowing us to invest the money the industry needs to provide both the value generation and value acknowledgement to make such solutions viable and effective,” Carpenter concluded. “This type of work – and orebody knowledge more widely – is critical for the future of mining.”

MotionMetrics-BeltMetrics

Weir eyes game-changing energy intensity reductions with ore characterisation project

With an extensive footprint from the rock face all the way through to tailings, it was only a matter of time before the Weir Group decided to enter the ore sorting game.

In recent years, the company has re-focused as a pureplay mining and aggregates company that can provide value throughout the flowsheet.

The company ditched its oil & gas exposure and added to its process plant and tailings remit with the acquisition of ESCO, a front-end-focused mining technology company with leading market share in the ground engaging tool (GET) segment.

Having more recently incorporated Motion Metrics into the mix – now within the ESCO division – it is embarking on a project that could have positive ramifications throughout the wider Weir Group offering.

Motion Metrics is a developer of artificial intelligence (AI) and 3D rugged machine vision technology. Its smart, rugged cameras monitor and provide data on equipment performance, faults, payloads and rock fragmentation (read: particle size distribution (PSD)). This data is then analysed using embedded and cloud-based AI to provide real-time feedback to the mining operation.

Initially developed for GET applications, these technologies have recently been extended into a suite of products and solutions that can be applied from drill and blast through to primary processing. Motion Metrics has, in the process, built up an impressive customer base and income stream, performing well since the acquisition.

Weir has outlined a £500 million-plus ($604 million-plus) emerging digital market opportunity for the entity, with much of this hinged on rugged machine vision technology, its sophisticated digital platform and the ability to add ore sensing to its offering.

This became clear at the company’s recent Capital Markets Day during a presentation from Chris Carpenter, VP of Technology for Weir ESCO.

Sensing, not sorting

At this event, Carpenter said the company was combining Motion Metrics’ PSD capability with ore characterisation technology to explore high-value opportunities for its clients.

“Looking further out, we believe ore characterisation…has the potential to transform mining by moving less rock, using less energy and creating less waste,” he said during his presentation. “Ore characterisation technology, which is underpinned by sophisticated sensing systems, captures critical data on properties and composition of rock, including rock hardness and mineral and moisture content.”

“When coupled with Motion Metrics fragmentation analysis technology, it has the potential to be a game changer, giving miners a full picture of the size and characteristics of rocks.”

Weir has outlined a £500 million-plus emerging digital market opportunity for Motion Metrics, with much of this hinged on rugged machine vision technology, its sophisticated digital platform and the ability to add ore sensing to its offering

This concept is not new. Measuring the quality of ore has been spoken of for decades and, more recently, has become a reality with the likes of MineSense, NextOre, IMA Engineering, Scantech, Malvern Panalytical and Rados International, among others, all having trialled technology or deployed commercial solutions across multiple commodities and sites.

Metso Outotec, one of Weir Minerals’ big competitors in the plant and tailings arena, has also spoken of the potential for bulk ore sorting by using its existing portfolio of material handling modules, crushing stations, mobile crushing equipment and bulk material handling solutions as the basis, while incorporating sensors from other vendors.

Weir believes it is one step ahead of its OEM counterpart in its pursuit of ore sorting, even if Carpenter is only referring to the trials currently being conducted at an unnamed copper mine as “ore characterisation” studies.

“With the acquisition of Motion Metrics, what we essentially bought was the ruggedised vision systems used in both mobile and fixed applications,” he told IM in January. “While the ore sensing piece is by no means trivial, the integrated AI capabilities and digital infrastructure that allows the data to be transported via a variety of avenues is incredibly important.

“Being able to pick up the data is one thing but being able to transport that data to the right people in a secure, accurate and timely manner is something different altogether.”

With a portfolio that includes LoaderMetrics™, BeltMetrics™, TruckMetrics™ and CrusherMetrics™, Motion Metrics and the Weir ESCO R&D team had several potential applications to start its ore characterisation journey with.

The company has settled on a BeltMetrics installation for its first trial, with Carpenter confirming the sensing solution under the microscope is currently positioned above a conveyor that is directly after the crusher in the flowsheet.

“We feel we will learn quickest over a conveyor belt, so it is really an expansion of the existing BeltMetrics solution that we will start with,” he said.

The sensing options open to Motion Metrics for this trial were also vast, with the aforementioned ore sorting vendors using the likes of X-ray Fluorescence, magnetic resonance, prompt gamma neutron activation analysis, pulsed fast thermal neutron activation, and others within their solutions.

Motion Metrics has chosen to incorporate hyperspectral imaging into its PSD mix.

Carpenter explained: “When you think about ore characterisation, we are just moving from a visual spectrum base with Motion Metrics vision-based systems to the expanded light spectrum for gathering data and making decisions. This is all being built on the established digital platform the company has.”

The company is not alone in using this type of technology. MineSense has spoken of trials using multispectral sensing technologies, while Australia-based Plotlogic has been tapping hyperspectral imaging to provide precision orebody knowledge prior to mining.

Collaborating on energy intensity reductions

Safety, scalability and flexibility were three factors taken into account with the hyperspectral imaging decision, but Carpenter was also aware of the potential limitations in using such technology.

Mines will need to be willing to make some changes and invest in alternative infrastructure to leverage the most value out of the solution the company is putting forward.

“That is where productivity partnerships that we spoke about on the Capital Markets Day are going to be really important,” he said. “It is going to be essential to collaborate with customers.”

The initial collaboration with the trial mine site looks to be extensive, stretching from the back end of December throughout 2023.

The site is already equipped with a significant amount of Weir Minerals and ESCO equipment, so the collaboration appears to have started well before this trial.

“Throughout the year, we will have the opportunity to make enhancements; starting out with an initial system that is upgraded,” Carpenter said. “By the end of the year, we should have high confidence of having something ready to commercialise. It could also be that we have other trials running concurrently with this one to extend the learnings.”

The two primary key performance indicators for the trial surround accuracy and speed, with Carpenter saying the company is targeting to at least meet the metrics competing technologies have been promoting over recent years.

“In both cases, we are well equipped to measure both and – in the initial phase – we are performing well,” Carpenter said.

“Right now, when they (the mine site) carry out an assay, they have to stop the conveyor belt, take a sample off and send it to a lab. At best, the feedback takes hours, if not days. Motion Metrics has done a really good job of building the sensors, algorithms and platforms to process the data coming from above that belt very quickly.”

There are a team of very experienced, PhD-equipped personnel currently working on this trial, monitoring the real-time results from Motion Metrics’ base in Vancouver, however there is a Weir network across the globe watching and waiting for news.

A sensor above a conveyor belt able to provide ore characterisation data is step one. Step two will most likely involve leveraging this data to provide insights as well as initiate downstream actions.

Then, there is the potential to equip these sensors for the pit on an excavator or wheel loader – which introduces many additional challenges both Motion Metrics and ESCO are aware of. Understanding exactly what is in the bank or going in the bucket will be critical to improving operational efficiencies.

These are longer-term goals that Motion Metrics, ESCO, Weir Minerals and Carpenter are cognisant of – and excited about – that may provide the true value to customers throughout the flowsheet.

“What is exciting for us is that – as may be obvious – the further upstream you can make some good decisions, the more energy you can save downstream,” he said. “As you get into some of the other processing elements in the plant, there are sustainability benefits to be had – a more efficient use of reagents to liberate the elements, a more efficient grinding setup based on ore characteristics, a reduction in water use, etc.

“The driver for this has really been sustainability and energy reduction. It is all about reducing the energy intensity associated with ore.

“We feel we are well equipped and in a good position to deliver on this and provide the industry with the step change in sustainability that it requires.”

Futureproofing the world’s copper supply through technology use

Realising the vision of a world of clean energy brings the issue of metal supply into sharp focus, with major and sustained increases required to meet growing demands, Thermo Fisher Scientific’s Ellen Thomson* writes.

With copper, for example, there are predictions of a shortfall of 15 Mt per annum by 2034 based on the current output. Therefore, boosting the efficiency of mining operations has never been more important, and smarter technology is undoubtedly the way forward to achieve this. Real-time sampling and measurement right across the mineral processing value chain can arm miners with analytical data, enabling them to build a robust understanding of the performance of each plant and drive continuous improvement at every step of the process. This article takes a closer look at how several of these steps could be optimised, including ore grade measurement, sorting on the mill feed conveyor, particle size analysis in the grinding circuit, the addition of reagents in the flotation circuit and elemental analysis and impurity detection in the concentrate leaving the plant.

Copper miners face the challenge of satisfying the rising demand for metal, while hitting the industry’s 2050 net zero carbon target. This is likely to require significant changes in operations through processing low-grade ore more efficiently, fully exploiting existing deposits, and bringing new mines into production. Unfortunately, higher-grade ore – with a 2-3% metal concentration – has largely been depleted, and miners now often work with concentrations of just 0.5%, meaning greater quantities of ore must be processed to extract sufficient amounts of copper. Therefore, it is essential to seek fresh opportunities to improve processes across the entire mining value chain, so that the increasing demand for copper ore will be met well into the future.

Does your ore make the grade?

Enhancing mining efficiency begins as soon as raw material is extracted from the ground, and extends through the crushing process and the mill feed conveyor. It is important to accurately measure the grade of the plant feed as this will impact both the performance of the concentrator and the production costs of the final product. However, this can be challenging, as some deposits are highly heterogeneous and unpredictable. Bulk ore sensing and sorting are, therefore, crucial steps in improving the raw feed material consistency and concentrator efficiency, since they reduce the dilution of incoming feeds and redirect low or marginal grade material away from the concentrator at the first opportunity. These stages rely on highly accurate and precise analytical technologies to rapidly differentiate material grade and minimise the loss of valuable material, moving only economically viable ore further along in the process. A high spec analyser is vital to this part of the chain and enables small and lower-grade satellite deposits to be accessed more successfully, as well as increasing profits for established plants.

Cracking down on the grinding circuit

Grinding is an essential first step in mineral liberation, but there is often no clear understanding of what the target particle size should be for a given head grade. Producing finer particles liberates more metal, but also increases media and energy costs. More than 50% of the energy consumed at a mine goes into crushing and grinding, so over grinding has definite economic and environmental implications. It is crucial, therefore, for each mine to find a balance between particle size and circuit throughput that limits consumption of grinding media and energy, while still maximising metal yields.

Grinding just enough is critical – too fine means lower throughput and/or higher energy consumption; too coarse and recovery suffers

Once a target has been established, real-time analysis of particle size and head grade elemental composition – for example, by prompt gamma neutron activation analysis (PGNAA) using a cross-belt system such as the Thermo Scientific™ CB Omni™ Agile Online Elemental Analyzer – can have a significant impact on the efficiency of the grinding circuit. In addition, by standardising particle size and controlling composition through the plant feed and grinding stages, the stability in feed forward control is increased going into the next stage – the flotation circuit.

The CB Omni™ Agile Online Elemental Analyzer (Thermo Scientific) rapidly and accurately differentiates material that is at or below the cut-off grade for ore sorting, the company says

Fine-tuning flotation

Flotation is a complicated physicochemical process where reagents – such as frothers, collectors and pH modifiers – are introduced to promote separation. The flotation feed can vary in particle size and chemistry depending on how the grinding circuit is optimised, and may contain excess fines. Miners might choose to compensate by adding more reagents, which can sometimes be beneficial but can also incur greater financial and environmental costs. Therefore, it is important to tailor the dosages of the flotation reagents in response to the incoming ore grade and particle size.

Concentrating on monitoring impurities

Certain impurities compromise the value of a concentrate, but they are often overlooked. Detecting impurities in the concentrate ahead of shipping reduces the chance of rejection at the receiving site – and the subsequent financial losses – and has the potential to improve ore quality, strengthen a company’s reputation and reduce the risk of penalty charges. In fact, representative sampling throughout ore extraction to concentrate the production process should be considered, but this can be extremely challenging owing to concentrated slurries, high tonnages, long distances between sample and analysis, and the expense and complexity of tackling head constraints.

Multi-stream analysers – like the Thermo Scientific MSA 3300 Slurry XRF Analyzer – are commonly employed in the mining industry, and can seem like an excellent, cost-effective solution. However, multiple streams can reduce efficiencies and lengthen the time to results – leading to less responsive control – and so their low upfront cost should be carefully balanced with their long-term implications. Choosing high quality analytical equipment that requires minimal manual input and has a proven record of reliability could help overcome these challenges and offer a better long-term solution. For example, a dedicated online sampling and elemental analysis station, such as the AnStat-330, provides a versatile and compact solution for addressing issues related to the process control of critical streams, time to results, the distance from sampler to analyser and the requirement for a metallurgical accounting quality sample.

 

 

The MSA 3300 Slurry XRF Analyzer (Thermo Scientific) measures up to 12 streams, with full stream separation retained throughout, Thermo Fisher says
The Anstat-330 Slurry Online Sampling and Elemental Analysis Station (Thermo Scientific) comes with options for additional process functionality, including distribution and pebble screening

Future-ready mining technology

It is vital to detect and understand why mining processes may be operating sub-optimally to know how to improve them. Relevant, reliable digital information is the foundation of an efficient operation and investing in more effective and continuous analysis is a key strategy for increasing return on investment. Digital twins, for example, integrate and collect data from sensors into a cloud platform to construct a complete and fully representative digital version of the concentrator. This allows miners to model different scenarios – such as changing process parameters – without interrupting the real-world activities of the mine. They aid in decision making and help to prevent unnecessary expenditure, as well as identifying any operational bottlenecks. Mining companies could potentially achieve 20 times – with some estimates up to 40 times – return on their initial investment through implementing digital twins, and more easily establish advanced, automated process control, increasing efficiency and depopulating mines.

Digital innovations are undoubtedly going to transform the mining industry and will help to reduce resource consumption and meet future sustainability goals. Without reliable, timely feedback, process control will always be on a ‘trial and error’ basis, which is no longer sufficient if miners are to fulfil the increasing copper demand ahead of us. Thermo Fisher Scientific supports the mining industry in adopting such technologies to enable dependable, timely and, often, real-time measurements that provide the data that miners need to track metal values, all the way from exiting the mine through to concentrate shipping.

*Ellen Thomson is PGNAA & Minerals Senior Applications Specialist at Thermo Fisher Scientific

Newcrest to apply ‘unique technical capabilities’ to copper-gold mine in BC, Canada

Newcrest Mining has entered into an agreement to acquire a 70% joint venture interest in Imperial Metals’ Red Chris copper-gold mine and surrounding tenements in British Columbia, Canada, for $806.5 million.

The deal will see Newcrest become Red Chris operator, in charge of deciding how to exploit the copper-gold porphyry open-pit mine.

Newcrest said the acquisition of Red Chris was “a measured entry” into North America and aligned with its stated strategic goals of building a global portfolio of Tier 1 orebodies where Newcrest can “deliver value through application of its unique operating capabilities”.

Red Chris comes with a mineral resource of 20 Moz of gold and 5.9 Mt of copper. The acquired property comprises 23,142 ha of land with 77 mineral tenures, five of which are mining leases, and sits within the traditional territory of the Tahltan Nation.

Newcrest Managing Director and CEO, Sandeep Biswas, said: “We are delighted to add this asset into the Newcrest portfolio. Following due diligence, we believe we can bring our unique technical capabilities to unlock the full value potential of this orebody in one of the premier gold districts in the world.

“We have identified a clear pathway to potentially turn this orebody into a Tier 1 operation. The geology of Red Chris is similar to our Cadia orebodies in Australia and we will be applying our considerable experience in exploration, open-pit mining, caving and processing to maximise the value of Red Chris and the opportunities in the surrounding region. We look at this opportunity in the same way as we do with Cadia, where we have proven we can create significant value from deep underground porphyry orebodies.”

Following the intensive due diligence process Biswas mentioned, Newcrest said it has a two-stage plan to deliver value from the acquisition:

Stage one will see the company apply its “Edge transformation approach” to the existing Red Chris open-pit mine and processing plant.

“Newcrest believes it can add significant value to Red Chris by applying the same Edge mind-set and approach that has led to significant operating improvements across all Newcrest operations over the last five years,” the company said.

Examples of where successful changes have been implemented to safely accelerate cash maximisation include process plant optimisation (debottlenecking, recovery uplifts, process control, improving concentrate quality), mine optimisation (improving orebody knowledge, grade control, fleet management system, mine planning) and supply chain cost reduction, according to Newcrest.

As part of this stage, Newcrest said it will initiate an extensional drilling programme.

“Newcrest intends to optimise the current open-pit mine plan and pursue initiatives to improve operational productivities and milling recoveries,” Newcrest said.

The current open-pit mine has an existing 11 Mt/y processing plant and associated infrastructure which allows ‘brownfield’ expansion options in the future, it added.

Stage 2 will see the company apply “industry leading technology”.

The company said: “Newcrest believes it can add significant shareholder value by applying technology to Red Chris that it has successfully applied at its other operations.”

Examples include block caving – “Newcrest believes the orebody has the potential to become a high margin bulk underground block cave. Newcrest will accelerate the necessary drilling and studies. Newcrest intends to conduct studies and review the ore reserve of the Red Chris operation to allow for reporting in accordance with JORC 2012 to take into account the potential transition to a future block cave operation.”

Coarse ore flotation could also be considered, the company said.

“Having demonstrated the recovery benefits of coarse ore flotation at Cadia, Newcrest will look to apply this technology to Red Chris,” Newcrest said.

And, then there is the application of one of the most popular technologies today: ore sensing and sorting, of which Newcrest said: “Positive results from trials underway at Telfer may lead to this technology being deployed at Red Chris.”

In terms of exploration, Newcrest said it would apply its experience in deep underground brownfield and greenfield exploration on the existing orebody and the broader land package to potential uncover more tonnes of copper and ounces of gold.

“Newcrest has identified opportunities to expand Red Chris’s mineral resources along strike and at depth in areas where there has been limited deep drilling to date. Historical shallow drilling indicates that there is also potential for further deep discoveries to be made in the larger tenement package.

“Newcrest will be targeting prospective regions beyond the current mine looking for further porphyry centres including small footprint, higher-grade gold-rich porphyry systems leveraging knowledge gained from Cadia which has similar geological features,” Newcrest said.

Red Chris, on the northern edge of the Skeena Mountains, commenced construction in 2012 and was completed in November 2014 for a total cost of C$661 million ($492 million). Commercial production commenced in July 2015 and, in the first nine month of 2018, the mine produced 20,320 t of copper and 29,569 oz of gold.