Tag Archives: particle size distribution

MotionMetrics-BeltMetrics

Weir eyes game-changing energy intensity reductions with ore characterisation project

With an extensive footprint from the rock face all the way through to tailings, it was only a matter of time before the Weir Group decided to enter the ore sorting game.

In recent years, the company has re-focused as a pureplay mining and aggregates company that can provide value throughout the flowsheet.

The company ditched its oil & gas exposure and added to its process plant and tailings remit with the acquisition of ESCO, a front-end-focused mining technology company with leading market share in the ground engaging tool (GET) segment.

Having more recently incorporated Motion Metrics into the mix – now within the ESCO division – it is embarking on a project that could have positive ramifications throughout the wider Weir Group offering.

Motion Metrics is a developer of artificial intelligence (AI) and 3D rugged machine vision technology. Its smart, rugged cameras monitor and provide data on equipment performance, faults, payloads and rock fragmentation (read: particle size distribution (PSD)). This data is then analysed using embedded and cloud-based AI to provide real-time feedback to the mining operation.

Initially developed for GET applications, these technologies have recently been extended into a suite of products and solutions that can be applied from drill and blast through to primary processing. Motion Metrics has, in the process, built up an impressive customer base and income stream, performing well since the acquisition.

Weir has outlined a £500 million-plus ($604 million-plus) emerging digital market opportunity for the entity, with much of this hinged on rugged machine vision technology, its sophisticated digital platform and the ability to add ore sensing to its offering.

This became clear at the company’s recent Capital Markets Day during a presentation from Chris Carpenter, VP of Technology for Weir ESCO.

Sensing, not sorting

At this event, Carpenter said the company was combining Motion Metrics’ PSD capability with ore characterisation technology to explore high-value opportunities for its clients.

“Looking further out, we believe ore characterisation…has the potential to transform mining by moving less rock, using less energy and creating less waste,” he said during his presentation. “Ore characterisation technology, which is underpinned by sophisticated sensing systems, captures critical data on properties and composition of rock, including rock hardness and mineral and moisture content.”

“When coupled with Motion Metrics fragmentation analysis technology, it has the potential to be a game changer, giving miners a full picture of the size and characteristics of rocks.”

Weir has outlined a £500 million-plus emerging digital market opportunity for Motion Metrics, with much of this hinged on rugged machine vision technology, its sophisticated digital platform and the ability to add ore sensing to its offering

This concept is not new. Measuring the quality of ore has been spoken of for decades and, more recently, has become a reality with the likes of MineSense, NextOre, IMA Engineering, Scantech, Malvern Panalytical and Rados International, among others, all having trialled technology or deployed commercial solutions across multiple commodities and sites.

Metso Outotec, one of Weir Minerals’ big competitors in the plant and tailings arena, has also spoken of the potential for bulk ore sorting by using its existing portfolio of material handling modules, crushing stations, mobile crushing equipment and bulk material handling solutions as the basis, while incorporating sensors from other vendors.

Weir believes it is one step ahead of its OEM counterpart in its pursuit of ore sorting, even if Carpenter is only referring to the trials currently being conducted at an unnamed copper mine as “ore characterisation” studies.

“With the acquisition of Motion Metrics, what we essentially bought was the ruggedised vision systems used in both mobile and fixed applications,” he told IM in January. “While the ore sensing piece is by no means trivial, the integrated AI capabilities and digital infrastructure that allows the data to be transported via a variety of avenues is incredibly important.

“Being able to pick up the data is one thing but being able to transport that data to the right people in a secure, accurate and timely manner is something different altogether.”

With a portfolio that includes LoaderMetrics™, BeltMetrics™, TruckMetrics™ and CrusherMetrics™, Motion Metrics and the Weir ESCO R&D team had several potential applications to start its ore characterisation journey with.

The company has settled on a BeltMetrics installation for its first trial, with Carpenter confirming the sensing solution under the microscope is currently positioned above a conveyor that is directly after the crusher in the flowsheet.

“We feel we will learn quickest over a conveyor belt, so it is really an expansion of the existing BeltMetrics solution that we will start with,” he said.

The sensing options open to Motion Metrics for this trial were also vast, with the aforementioned ore sorting vendors using the likes of X-ray Fluorescence, magnetic resonance, prompt gamma neutron activation analysis, pulsed fast thermal neutron activation, and others within their solutions.

Motion Metrics has chosen to incorporate hyperspectral imaging into its PSD mix.

Carpenter explained: “When you think about ore characterisation, we are just moving from a visual spectrum base with Motion Metrics vision-based systems to the expanded light spectrum for gathering data and making decisions. This is all being built on the established digital platform the company has.”

The company is not alone in using this type of technology. MineSense has spoken of trials using multispectral sensing technologies, while Australia-based Plotlogic has been tapping hyperspectral imaging to provide precision orebody knowledge prior to mining.

Collaborating on energy intensity reductions

Safety, scalability and flexibility were three factors taken into account with the hyperspectral imaging decision, but Carpenter was also aware of the potential limitations in using such technology.

Mines will need to be willing to make some changes and invest in alternative infrastructure to leverage the most value out of the solution the company is putting forward.

“That is where productivity partnerships that we spoke about on the Capital Markets Day are going to be really important,” he said. “It is going to be essential to collaborate with customers.”

The initial collaboration with the trial mine site looks to be extensive, stretching from the back end of December throughout 2023.

The site is already equipped with a significant amount of Weir Minerals and ESCO equipment, so the collaboration appears to have started well before this trial.

“Throughout the year, we will have the opportunity to make enhancements; starting out with an initial system that is upgraded,” Carpenter said. “By the end of the year, we should have high confidence of having something ready to commercialise. It could also be that we have other trials running concurrently with this one to extend the learnings.”

The two primary key performance indicators for the trial surround accuracy and speed, with Carpenter saying the company is targeting to at least meet the metrics competing technologies have been promoting over recent years.

“In both cases, we are well equipped to measure both and – in the initial phase – we are performing well,” Carpenter said.

“Right now, when they (the mine site) carry out an assay, they have to stop the conveyor belt, take a sample off and send it to a lab. At best, the feedback takes hours, if not days. Motion Metrics has done a really good job of building the sensors, algorithms and platforms to process the data coming from above that belt very quickly.”

There are a team of very experienced, PhD-equipped personnel currently working on this trial, monitoring the real-time results from Motion Metrics’ base in Vancouver, however there is a Weir network across the globe watching and waiting for news.

A sensor above a conveyor belt able to provide ore characterisation data is step one. Step two will most likely involve leveraging this data to provide insights as well as initiate downstream actions.

Then, there is the potential to equip these sensors for the pit on an excavator or wheel loader – which introduces many additional challenges both Motion Metrics and ESCO are aware of. Understanding exactly what is in the bank or going in the bucket will be critical to improving operational efficiencies.

These are longer-term goals that Motion Metrics, ESCO, Weir Minerals and Carpenter are cognisant of – and excited about – that may provide the true value to customers throughout the flowsheet.

“What is exciting for us is that – as may be obvious – the further upstream you can make some good decisions, the more energy you can save downstream,” he said. “As you get into some of the other processing elements in the plant, there are sustainability benefits to be had – a more efficient use of reagents to liberate the elements, a more efficient grinding setup based on ore characteristics, a reduction in water use, etc.

“The driver for this has really been sustainability and energy reduction. It is all about reducing the energy intensity associated with ore.

“We feel we are well equipped and in a good position to deliver on this and provide the industry with the step change in sustainability that it requires.”

Weir preparing to trial proprietary ore sorting tech by the end of 2022

In the Weir Group Capital Markets Event presentation last week, Chris Carpenter revealed that the company was collaborating within its divisions on trials of ore sorting technology in an effort to move less rock at mine sites and optimise processing within the plant.

Carpenter, Vice President of Technology at Weir ESCO, said the company was combining Motion Metrics’ particle size distribution (PSD) capability with ore characterisation technology to explore “in-pit sorting” opportunities for its clients.

“Looking further out, we believe ore characterisation and in-pit ore sorting has the potential to transform mining by moving less rock, using less energy and creating less waste,” he said during his presentation. “Ore characterisation technology, which is underpinned by sophisticated sensing systems, captures critical data on properties and composition of rock, including rock hardness and mineral and moisture content.

“When coupled with Motion Metrics fragmentation analysis technology, it has the potential to be a game changer, giving miners a full picture of the size and characteristics of rocks.”

Motion Metrics, a developer of artificial intelligence (AI) and 3D rugged machine vision technology, was acquired by Weir almost a year ago, with the business incorporated into the Weir ESCO division. Its smart, rugged cameras monitor and provide data on equipment performance, faults, payloads and rock fragmentation. This data is then analysed using embedded and cloud-based AI to provide real-time feedback to the mining operation.

These technologies were initially developed for ground engaging tool applications but have recently been extended into a suite of products and solutions that can be applied from drill and blast through to primary processing.

Carpenter said the added PSD capability from Motion Metrics was expanding the company’s value presence across the mine to the processing plant, where Weir Minerals operates.

“Results from early adoption of Motion Metrics PSD solutions have been extremely encouraging,” he said. “Feedback from customers is positive; data sharing and collaboration have increased.

“Given this early progress, we are really excited about the opportunity and expect fragmentation analysis to be a key growth driver for Motion Metrics in the years to come.”

On the in-pit sorting potential, Carpenter said Weir ESCO had laboratory-validated equipment and field trials of its proprietary solution that were due to start at customer sites before the end of the year tied to these developments.

“If successful, this technology opens the door to in-pit sorting, where miners complete the first stage of crushing in the pit and analyse the outputs to make real-time decisions about which rocks have sufficient mineral content to be moved,” he said. “This is a step change from the current process, where energy is expended in transporting and processing all of the rocks, regardless of mineral content, and with significant waste generated from zero- and low-grade material.”

He concluded: “Our vision is to move less rock, moving only the rocks with sufficient mineral content and using the data that is captured on size and hardness to optimise processing. The natural evolution thereafter will be towards real-time automation control of processing equipment, ensuring the right rocks are processed in the most efficient way, using less energy and creating less waste.”

Orica ups the fragmentation monitoring ante with FRAGTrack Gantry

Orica has announced the release of what it says is its most innovative fragmentation monitoring solution yet, FRAGTrack™ Gantry.

The company calls FRAGTrack Gantry a market-first haul truck measurement solution that combines real-time oversize detection alerts and accurate particle size distribution (PSD) of fragmentation on all models and sizes of haul trucks.

The new product combines the success of the existing suite of automated post-blast fragmentation monitoring solutions – covering the original FRAGTrack release and the release of FRAGTrack Crusher earlier this year – and the feedback from customers experiencing loss of production due to crusher blockage.

FRAGTrack Gantry uses advanced machine vision and machine learning technologies to enable autonomous triggering and processing, without interfering with the haulage operation, Orica claims

It leverages real-time oversized detection through artificial intelligence (AI), with the machine-learning capability applied to real-time detection accomplished within seconds, with alerts syndicated via Fleet Management Systems (FMS), email or SMS for the re-routing of trucks. Operators can also predetermine customisable oversize limits, enabling a reduction in crusher blockage/damage frequency due to oversize material, the company says.

Orica Vice President – Digital Solutions, Raj Mathiravedu, said: “The full adoption of AI technology into our architecture, coupled with our strategic partnership with Microsoft, allows us to expedite the delivery of capabilities that were not previously possible, and FRAGTrack Gantry is another example of how we are leveraging AI to help deliver intelligence and value to our customers.”

The reliable and accurate fragmentation information from FRAGTrack Gantry enables customers to optimise their drill and blast operations for downstream processes without impacting the haul circuit operation, Orica says. The addition of a Gantry option complements the suite of FRAGTrack measurement systems currently available for shovel-, crusher- and conveyor-mounted configurations.

Antofagasta readies primary sulphide leaching technology options

The ability to leach primary copper sulphides has, on many occasions, proved a hurdle too much, with conceptual work in the laboratory or pilot scale falling down on sub-economic or volatile recovery rates when working out in the field.

This problem tends to result in one of two things: new capital-intensive concentrators are brought into process these sulphides, or brownfield oxide operations are drafted up that prolong existing leaching operations for a few more years when – hopefully – copper prices are higher.

Antofagasta has come up with an alternative option that leverages chloride-based reagents and 20-years of knowledge leaching secondary sulphides.

Called Cuprochlor®-T, the proprietary process has undergone five years of intense development leading to the point that the company is now open to talking about its potential.

It leverages off the first iteration of leaching technology Antofagasta devised for secondary sulphides – Cuprochlor.

Cuprochlor, which is now working at the Michilla mine in Chile (which Antofagasta sold in 2016), effectively binds together the particles of mineral – particularly fine in the case of Michilla – into a porous but manageable material that can then be heap leached. The agglomeration is achieved by mixing the mineral and leach solution with chloride salts and sulphuric acid, which react to form a plaster-like paste.

Over the years, the process has been refined, going on to consistently deliver recovery rates of around 90%.

Sitting on an expansive base of primary sulphide resources – mainly chalcopyrite – and the success of Cuprochlor, Antofagasta, around five years ago, began a series of tests, adjusting variables such as temperature, reagent concentrations and particle size to see if the chloride leaching process could be adapted for the treatment of primary sulphides.

Temperature proved to be one of the keys, with tests showing that by elevating the temperature of the heap to around 30°C, Cuprochlor-T was able to stimulate the required chemical reaction for recovering copper from primary sulphides such as chalcopyrite.

Another key differentiator between the two chloride leaching technologies is the “reagent recipe” and particle size distribution (PSD), Alan Muchnik, VP Strategy & Innovation for Antofagasta, told IM.

“Providing a constant temperature throughout the process is very important, but the real innovation is the approach we have used,” he said. “It involves a combination of factors, including, among others, the recipe for reagent concentrations and the required PSD.”

While not wanting to reveal the ‘secret sauce’, Muchnik said the PSD consideration goes beyond the usual P80 industry reference point.

It is this balance that has landed the company with recoveries of over 70% after approximately 200 days of leaching on the heap in test work.

Muchnik expanded on this: “The Cuprochlor-T process, in simple terms, involves leaching in a chloride environment – where there are no passivation layer bonds. This allows for the copper, iron and chloride ions to react, which, at a controlled temperature, results in the economic production of copper.”

This is through three stages:

  • First up is an agglomeration stage where the necessary reagents are added and are left to rest at a constant aeration and temperature;
  • Second, the ore is irrigated intermittently with continued aeration, also maintained at a constant temperature; and
  • Finally, after 200 days, the ore completes the leaching cycle and allows the company to obtain recoveries of 70% copper or more.

What started with laboratory testing and progressed to pilot testing and a “semi-industrial” test on several different heaps at Centinela has recently concluded with an industrial test of over 40,000 t of primary sulphide material averaging 0.4% Cu – containing more than 90% chalcopyrite – that, using the same process outlined by Muchnik, showed consistent recoveries of over 70%, he said.

Alan Muchnik, VP Strategy & Innovation for Antofagasta

Asked if the company is eyeing even higher recoveries that can compete with the levels Cuprochlor is achieving on secondary sulphides, Muchnik said it was all about an economic tradeoff.

“It may be possible to hit such a percentage [as Cuprochlor], but that is not the aim or expectation with the kinetics we are currently seeing in Cuprochlor-T,” he said. “There is always a tradeoff between the length of irrigation time, the PSD and the recoveries, all of which are related to capital costs, operating costs and the payback associated with the process.”

The Antofagasta planning and operations teams have now got their hands on the Cuprochlor-T ‘licence’ and will be busy outlining potential deployments for consideration in the company’s annual planning cycles.

There are some obvious places to start.

The Zaldívar open-pit, heap-leach copper mine, 175 km southeast of Antofagasta, is currently in the process of transitioning to chloride leaching operations with Cuprochlor.

The project, which includes an upgrade of the SX plant and the construction of new reagent facilities and additional washing ponds for controlling chlorine levels, was completed in January 2022 and is now being commissioned. It is set to boost copper recoveries by approximately 10 percentage points, increasing production at Zaldívar by around 10,000–15,000 t/y over the remaining life of mine.

“In addition to transitioning to chloride leaching with Cuprochlor for secondary sulphides, we are currently progressing studies for the primary sulphide orebody that currently lies below the Zaldívar reserves to prove if Cuprochlor-T leaching can work,” Muchnik said. “Within our resource base, there are approximately 460 Mt of primary sulphide resources declared here.”

Both Centinela and Antucoya have primary sulphide resources and existing heap leach and SX-EW facilities that would fit the Cuprochlor-T blueprint too.

Muchnik said: “One of the technology attractions of Cuprochlor-T is the ability to use otherwise idle leach pad and SX-EW capacity. That it is the scale limitation at our current operations, but the technology can be gradually deployed within a plant that is already adapted for chloride leaching, phasing this in during the life of mine to fit requirements.

“It provides an ongoing adoption process option rather than an immediate infrastructure project that sees an operation shift from oxide leaching to a different kind of heap leaching in one go.”

The advent of Cuprochlor-T does not mean the company will completely drop potential concentration projects, Muchnik clarified, highlighting the second concentrator project currently subject to a feasibility study at Centinela.

In addition to the capital and operating cost benefits that would come with Cuprochlor-T over the concentration route, there is likely to be a sustainability benefit.

“It’s only an indicative reference as each case is different, but you would expect the energy consumption associated with Cuprochlor-T leaching and SX-EW treatment to be less than half of the normal route of copper concentration and SX-EW,” Muchnik said.

In this respect, it is a favourable consideration for Antofagasta’s long-term carbon-neutral goals.

While each potential Cuprochlor-T implementation will have to go through corresponding project studies, Muchnik was confident in predicting that new copper from Cuprochlor-T would be produced this decade.

With five years of substantial testing under its belt, not many metallurgists would bet against him.

Orica to further optimise blasting and mine-to-mill initiatives with FRAGTrack Crusher

Orica has announced the release of its latest fragmentation monitoring solution, FRAGTrack™ Crusher, an automated pre-crusher fragmentation measurement tool delivering, it says, operational continuity in a safe and reliable way.

Based on the success of the existing suite of automated post-blast fragmentation monitoring solutions, Orica has developed FRAGTrack Crusher to meet growing demand from customers for downstream monitoring and optimisation solutions at every stage of the mining value chain, the company said. The technology leverages the latest deep neural network artificial intelligence (AI) framework along with “industry-proven” hybrid 2D and 3D particle size distribution (PSD) processing methods to deliver a fully autonomous adaptive fragmentation monitoring solution at the crusher dump pocket, enabling customers to measure material on the truck during the tipping operations, according to the company.

The company said: “FRAGTrack Crusher provides truck-by-truck PSD analysis of rock fragments during the dumping operation with unmatched accuracy and without impacting operations or productivity.”

The technology delivers constant performance tracking for both the drill and blast operations and the downstream processing functions, driving continuous improvements end-to-end in the mining value chain. When bundled with Orica’s FRAGTrack Conveyor technology in a fragmentation monitoring solution, it enables further analysis of the crusher’s performance and the impact of blasting parameters in a production workflow in real time, according to Orica.

Orica Vice President – Digital Solutions, Raj Mathiravedu, said: “The full adoption of AI technology into our architecture, coupled with our strategic partnership with Microsoft, allows us to expedite the delivery of capabilities that were not previously possible, and FRAGTrack Crusher is an example of how we leverage AI to help deliver intelligence and value to our customers.”

PSD data is provided via a real-time application programming interface and industrial open platform communication unified architecture protocol to drill and blast software and crusher distributed control systems, allowing seamless integration into the existing site operation workflows, Orica says.

FRAGTrack Crusher has already been gaining traction globally in the mining and quarry markets, where it is being used as a critical enabler of blasting optimisation and mine-to-mill initiatives, according to the company. “This signals a significant transformation from the subjective nature of existing manual PSD analysis methods while eliminating the safety concerns of on-bench photography and the extensive time required to manually process and correlate to relevant data sets, including fleet management data to determine the material’s blast of origin.”

In the most recent application of FRAGTrack Crusher in a Tier One low-cost gold operation in Western Australia, it successfully delivered an automated blasting optimisation workflow on site leveraging PSD as a primary key performance indicator to throughput and overall mill performance. The project included installation of a FRAGTrack Conveyor system, post crusher, allowing pre- and post-crusher PSD to be monitored. When combined with a fragmentation improvement process, the FRAGTrack solution enabled a continuous feedback loop that enabled the operation to rapidly optimise blast designs that drive overall project profitability, according to Orica.

MBV Systems upgrades 3DPM particle size measurement system

MBV Systems has upped the accuracy of its 3D particle size measurement system, 3DPM, as it looks to provide customers with “more control over result output, communication protocols and flexible warnings for abnormal properties of the material flow”.

The 3DPM provides online particle size distribution measurements of rock and bulk material through 3D measurements on conveyor belts.

With the latest in laser triangulation hardware, the measurement module of the new generation 3DPM makes it possible to measure particles at higher belt speeds, using lower strength lasers, and detect even smaller particles than the previous iteration.

“Therefore, the customer base can now be expanded to industries processing particles previously too small to be measured robustly,” the company said.

Lars Lindqvist, CEO at MBV Systems, said: “We are really happy to now be able to present valuable data, which previously has been hard to reach, to our customers. First out is Rio Tinto in Australia, but, for example, Eramet in Norway and JFE Steel in Japan also plan to use this new generation of 3DPM very soon. With this upgrade, we can increase our customer base and meet our customers’ requirements in a much better way than before.”

Maintenance on the new system is made easier with modular housing options offering a variety of heating and cooling options as well as accessories for dust prevention, the company says. Tools and methods for quick and straightforward system calibration and spare part replacement, meanwhile, minimise system downtime.

The new system has been developed with remote commissioning in mind, making it possible to set the system up following installation with remote assistance. This enables better support opportunities, lower system costs and faster commissioning lead time for the customer, the company said.