Tag Archives: Scope 1 emissions

Bellevue Gold on its way to achieving ‘holy grail’ with EDL pact

Bellevue Gold Limited says it has taken a pivotal step towards its aspirational goal of becoming Australia’s first ASX-listed gold miner with net-zero emissions by signing an Early Works Agreement with Energy Developments Pty Ltd and locking in long-lead items for its power station, ready for the processing plant commissioning in mid-2023.

The purchasing of the long lead items will see the company continue its carbon mitigation strategy, based off proven technologies with a Tier 1 power supplier, it said.

This agreement is a key step in Bellevue’s strategy to be powered by a forecast average of 80% renewable energy each year using a wind, solar and battery hybrid power solution.

EDL built, owns and operates a similar turnkey power solution at the Agnew gold mine, around 35 km south of the Bellevue gold project.

Bellevue and EDL are currently negotiating a Power Purchase Agreement for the project, which is subject to approval by the boards of both EDL and Bellevue.

Bellevue says its power solution is central to the company’s goal of generating the lowest carbon emissions per ounce of gold produced by any major Australian gold mine, with forecast emissions of between 0.15-0.20 t of CO2e/oz.

“As well as being the lowest emitter on a per ounce basis, the project is forecast to have the lowest total Scope 1 emissions of any major mine in Australia,” it said. “This will give the project the cleanest power supply in Australia based on a greenhouse gas per kilowatt hour basis of power generation.”

By reducing greenhouse gas emissions, with a renewable energy power station and undertaking other sustainable initiatives, Bellevue aims to produce carbon-neutral gold, giving the company a major competitive advantage in global investment markets, it says. This also provides potential for the company to seek a premium for the sale of ‘green gold’, it added.

The power station will prioritise the use of renewable energy and will also include a gas engine configuration, which, it says, will ensure there is sufficient power for the mine, even in the rare absence of solar and wind resources.

EDL will supply trucked LNG to the project to maintain optionality for any future technological innovations in thermal generation alternative fuels. Trucked LNG provides a much cleaner fuel than diesel, which was an important consideration to reduce emissions as far as possible, it said.

At a steady-state production rate of 1 Mt/y, renewable energy is expected to meet up to 80% of the project’s annual electricity needs, taking advantage of the region’s strong solar and wind resources.

Bellevue says it has been modelling the wind speeds and direction with a SODAR unit, which has allowed for the integration of wind turbines to increase the renewable energy penetration rate.

Maximising renewable energy uptake has been a key design consideration for the processing facility. The facility will have the ability to use more power – such as crushing and heating – when increased renewable energy is available, reducing thermal requirements, according to the company.

The planned infrastructure includes an oversized crushing circuit to facilitate a processing rate of more than 1.5 Mt/y (against current throughput rate of 1 Mt/y), allowing the operational flexibility in this area for an optimised match up of the renewable energy demand to the renewable energy resource.

The designed infrastructure will allow Bellevue to have a cost-effective renewable energy supply and optimise the power demand curve to better align with key daytime (solar) and night time (wind) energy peaks and troughs. Through the generation of power from renewable energy sources, it will create the optionality for the crushing circuit to maximise crushing in peak renewable energy generation periods. This will have the potential to offset more than 1 MW in demand on thermal power generation and lead to a direct cost saving and emissions reduction.

Bellevue Managing Director, Steve Parsons, said: “EDL is a leader in hybrid off-grid power stations. Their skills and experience will help ensure we maximise the use of renewable energy at the Bellevue gold project.

“Bellevue is forecasted to be a 200,000 oz a year gold miner with low all-in sustaining costs of A$1,000-A$1,100/oz ($644-$708/oz) powered by circa-80% renewable energy, with a pathway to net-zero emissions as a world-leading company in the race to decarbonise the mining sector.

“Our pre-production carbon mitigation strategy has been strategic and is world leading. It achieves the ‘holy grail’ of lower emissions and a direct cost reduction in power generation.

“The combination of these metrics is expected to will position Bellevue as one of the most sustainable and financially successful Australian gold miners, maximising returns for all stakeholders. It will also underpin the company’s strong appeal to global investors, who demand performance on both financial and ESG measures.”

On the same day as the EDL announcement, the company signed a Native Title Agreement with Tjiwarl (Aboriginal Corporation) RNTBC, being the native title rights and interests holders and traditional owners of the land which hosts the Bellevue gold project.

Weir Group commits to more ambitious Scope 1, 2 and 3 emission goals

The Weir Group says it has submitted new, more ambitious Scope 1, 2 and 3 emissions reduction targets to the Science Based Targets Initiative (SBTi) for validation.

The move, which follows its commitment, in December 2021, to set SBTi targets, could see the company include absolute reductions in Scope 1 and 2 emissions of 30% and Scope 3 emissions of 15% by 2030, versus a 2019 baseline.

Weir Group explained: “The targets are more ambitious than our previous goals, set in 2020, in two ways:

  • “Switching from an intensity to an absolute emissions reduction basis will drive deeper cuts in Scope 1 and 2 emissions; and
  • “The new Scope 3 commitment adds targets for emissions in Weir’s upstream and downstream value chain for the first time.”

These new targets will make a significant contribution to decarbonising the mining industry, according to Weir. Delivering them would mean that, in 2030, an annual reduction of circa 4.2 Mt CO2e is achieved, equivalent to the annual CO2 emissions of almost 1 million petrol cars.

Weir is focused on developing engineered solutions for smarter, more efficient and sustainable mining, providing customers with new value-adding technologies for use in the most energy intensive processes in the mine, it says.

“With 97% of our total emissions falling within Scope 3, over the lifetime of our products in use, we recognise that our biggest contribution to decarbonising mining will come from delivering sustainable solutions to accompany the industry’s transition to low-carbon energy sources,” the company said.

“The mining industry is critical to the global energy transition as it extracts the raw materials needed to implement new, greener technologies. However, it is energy intensive and so has to meet this increasing demand while delivering on its own environmental commitments. Therefore, it is imperative that we actively partner with customers and others across the industry to drive the broader energy transition required.”

Jon Stanton, Weir Group CEO, said: “These new, more ambitious targets mark another important step in our strategy and strengthen our commitment to further reduce emissions from our own operations and in our wider value chain. Weir’s products and solutions already have a positive impact on the energy efficiency of our customers’ operations, but we recognise that more needs to be done. Our customers are pushing us to innovate lower carbon, more energy efficient solutions and we are stepping up to this. We continue to push boundaries at pace to develop smarter, more efficient and more sustainable solutions for the global mining industry that will enable the delivery of the natural resources essential to create a better future for the world.”

Voltvision brings energy efficiency enhancements to Endeavour’s Hounde mine

Voltvision, the high voltage (HV) electrical data analytics business, has announced the successful completion of Phase 1 of what it says is a pioneering energy efficiency and operational enhancement project at Endeavour Mining’s Houndé Mine in Burkina Faso.

The results of this initial phase have proved so constructive that Voltvision has been commissioned to roll out the project to all of Endeavour Mining’s mines and development projects across West Africa, it said.

This project hinges on Voltvision’s big data software solution, a program that has been designed by mining specialists and engineers to optimise energy consumption and improve predictive maintenance on all high voltage equipment used on mine sites. This software is coupled with a data extraction cube, a secure ‘plug-and-play’ analytics device installed on a mine’s network. This device extracts and transmits hundreds of energy-related data points to the cloud-based software using Wi-Fi /4G networks, Voltvision explained.

Manoli Yannaghas, Co-Founder and Managing Director of Voltvison, says: “The Phase One roll out of this project was intended to provide high resolution data extraction in support of existing data systems presented in mobile- and PC-based dashboards. This allowed the mine’s technical team to monitor incoming grid power quality and the power quality across the Houndé power system. It has also allowed the accurate recording and logging of power usage as well as the movement from source to point of use again across the whole HV and MV networks.

“Phase 1 of the project commenced in December 2021 when the Cube device was remotely installed across Hounde’s high voltage electrical network, with assistance from the Endeavour team. The ‘plug-and-play’ nature of the device allowed the project to commence with minimal hassle and zero downtime in production.

“In the four months since this installation, a wide range of data points, numbering more than 200 individual points, have been collected and analysed. Early analysis of this data has facilitated a clear and comprehensive understanding of how the mine’s electrical network is behaving and how power is utilised in real time. This has made it possible for the Endeavour team to identify hidden problems and inefficiencies and understand what changes are required to achieve greater energy efficiency across the entire operation. The correction of such efficiencies can deliver quick cost savings and CO2 reduction as well as edging closer to operational excellence.”

The data recorded in this initial phase is a solid foundation for Phase 2, which is due to commence in May, he added.

“Phase 2 is intended to identify further power savings opportunities; develop early warning mechanisms for grid outages; and extract demonstrable Scope 1 and 2 GHG emission numbers. Voltvision will also provide highly accurate asset management services on capital equipment using algorithms it has developed with leading machine learning universities to provide advanced warnings of performance changes and fault development.”

Voltvision’s electrical management software is in the process of being rolled out across the rest of Endeavour’s operations, as mentioned.

Yannaghas concluded: “Through this initial Phase 1, we have formed an excellent working relationship with Endeavour Mining and are exceptionally pleased with the results produced thus far. We look forward to further engagement and assisting the company in optimising its HV electrical asset base, realising cost savings and facilitating the decarbonisation of its mine and project portfolio.”

Orica addresses Scope 1, 2 and 3 emissions in latest GHG reduction pledge

Orica has announced its ambition to achieve net zero emissions by 2050, covering Scope 1 and 2 greenhouse gas (GHG) emissions and its most “material” Scope 3 GHG emission sources.

The ambition builds on Orica’s previously announced medium-term target to reduce Scope 1 and 2 operational emissions by at least 40% by 2030.

To advance its net zero emissions ambition, Orica says it will:

  • Continue to reduce its operational footprint: prioritising Scope 1 and 2 operational emissions reductions by deploying tertiary catalyst abatement technology, sourcing renewable energy and optimising energy efficiency and industrial processes;
  • Collaborate with its suppliers: as new and emerging technologies scale and become commercial, partner with suppliers to source lower emissions intensity ammonium nitrate (AN) and ammonia to reduce Orica’s Scope 3 emissions, which account for approximately 70% of Orica’s total Scope 3 emissions;
  • Prioritise lower carbon solutions: developing lower carbon AN, as well as new products, services and technology offerings to help customers achieve their own sustainability goals; and
  • Report progress: transparently disclose performance consistent with the recommendations of the Task Force on Climate-Related Financial Disclosure.

Orica Managing Director and Chief Executive Officer, Sanjeev Gandhi, said: “Our ambition of net zero emissions by 2050 shows our commitment to playing a part in achieving the goals of the Paris Agreement. This is a strong signal that the decarbonisation of Orica will, and must, continue beyond 2030 and requires a collaborative approach across all of our stakeholders.

“We’re making solid progress having already achieved a 9% emissions reduction in financial year 2020 (to June 30, 2020) and further reductions this financial year. We’ve taken our 2030 medium-term target and extended our planning over the long term, developing a credible roadmap to support our ambition to achieve net zero emissions by 2050.

“Over the next decade, Orica is deploying tertiary catalyst abatement, prioritising renewable energy opportunities and supporting a trial of carbon capture utilisation and storage technology. Beyond 2030, how we achieve our ambition is dependent on effective global policy frameworks, supportive regulation and financial incentives, and access to new and emerging technologies operating at commercial scale.

“Orica is a company with a long history of technical innovation which is already helping our customers improve mine site safety, productivity and efficiency. We will apply the same approach by deploying low-emissions technologies to our major manufacturing sites and working with our global suppliers and stakeholders on reducing the footprint of our supply chain.”

Orica says it has already undertaken several initiatives to drive action towards its medium-term target and support its 2050 net zero emissions ambition.

In FY2020, Orica’s Bontang AN manufacturing facility in Indonesia recorded a 43% reduction in net emissions and its Kooragang Island nitrates manufacturing plant (pictured below) in Australia achieved a 6.3% reduction in net emissions, by replacing and improving the performance of selective catalyst abatement technologies, the company said.

In partnership with the Alberta Government this year, Orica’s Carseland AN manufacturing facility in Canada has commissioned tertiary catalyst abatement technology, reducing emissions by approximately 83,000 t/y of CO2e.

Orica has assigned approximately A$45 million ($33 million) over the next five years in capital to deploy similar tertiary abatement technology across its Australian AN sites, which, it says, could deliver an annual reduction of 750,000 t CO2e.

Orica will also support the construction of a mobile demonstration plant of carbon capture, utilisation and storage technology at its Kooragang Island manufacturing facility, led by Mineral Carbonation International, in partnership with the Australian Government and the University of Newcastle. The plant is scheduled to be built on Orica’s Kooragang Island site by the end of 2023 and have direct access to some 250,000 t of captured CO2 from Orica’s manufacturing operations.

ERM on executing the mining sector’s sustainability strategies

With sustainability close to the number one topic shaping the business landscape, the mining industry faces perhaps more scrutiny today than ever before. From stakeholder engagement to employee welfare and the emissions generated from using mined commodities, there is a spectrum of issues on which mining companies are judged. Not just by traditional critics such as NGOs, but increasingly by policymakers, investors and consumers themselves.

As a result, mining companies are seeking the advice of consultants that live and breathe environmental, social and governance (ESG) issues to adapt to this evolving backdrop (see the mining consultants focus in IM October 2021 for more on this).

In this regard, they don’t come much bigger than ERM, which calls itself the largest global pure play sustainability consultancy. With a remit that goes into strategic, operational and tactical challenges, the company’s services have been in serious demand of late.

Louise Pearce, ERM Global Mining Lead; Jonathan Molyneux, ERM Mining ESG Strategy Lead; Peter Rawlings, Low Carbon Economy Transition Lead; and Geraint Bowden, Regional Client Director – Mining, were happy to go into some detail about how the company is serving the industry across multiple disciplines.

In demand

According to the four, there is increasing demand for services from miners interested in energy/battery minerals (lithium, cobalt, nickel, copper, platinum, palladium and rhodium (PGMs)) on the back of rising numbers of new mines coming onto the scene, “shorter supply chains to customers”, the perceived need to secure domestic supply of these minerals, and requirements of “evidence of responsibly-produced certifications from industry organisations such as the Initiative for Responsible Mining Assurance (IRMA)”.

Such trends have been underwritten by a shift in both the requirements and considerations around the extraction of these minerals, according to Molyneux.

“In the last five to seven years, the main ESG incentives for change have come from access to capital (ie investor ESG preferences, especially in relation to catastrophic incidents),” he said.

“Over the last three years, we have seen a strong rise in expectations from downstream customers, particularly leading brands.”

Jonathan Molyneux, ERM Mining ESG Strategy Lead

Automotive original equipment manufacturers like BMW and Daimler are placing sustainability at the centre of their brands, according to ERM. Their initial focus has been on ‘net-zero’ driving/electrification – and they have made progress on this with several major electric car launches. They then shifted to examining the carbon emissions and ESG, or responsible practices, of tier-one and tier-two component manufacturers. The last step has been a full analysis of the ESG credentials of input materials right back to source, ie the mine.

“We see a shift from the historic lens of customers managing supply risk by sourcing from organisations which ‘do little/no harm’ (eg human rights compliance, catastrophic incident avoidance) to supply partners that can contribute to the ‘do net good’ or ‘create value for all stakeholders’ (ie communities, workforce, nature positive),” Pearce said.

Such a shift has resulted in more clients considering “circular thinking” in their operational strategy, as well as carrying out risk reviews and transformation projects focused on a company’s social or cultural heritage. Tied to this, these same companies have been evaluating their water use, biodiversity requirements and, of course, decarbonisation efforts.

It is the latter on which the steel raw materials companies predominantly have been looking for advice, according to ERM.

The focus has been on ‘green’ iron ore, low-carbon steel and ‘circular’ steel, according to Molyneux and Bowden, with ERM providing input on how companies in this supply chain can integrate sustainability into their strategy and operations.

On the thermal coal side, meanwhile, it is a very different type of ERM service in demand: mine retirements, closure/local/regional regeneration transitions and responsible disposals.

Delivering on decarbonisation

The mining industry decarbonisation targets have come thick and fast in the last 18-24 months, with the latest announcement from the International Council on Mining and Metals (ICMM) seeing all 28 mining and metals members sign up to a goal of net zero Scope 1 and 2 greenhouse gas (GHG) emissions by 2050 or sooner, in line with the ambitions of the Paris Agreement.

Many have gone further than Scope 1 (direct emissions from owned or controlled sources) and Scope 2 (indirect emissions from the generation of purchased electricity, steam, heating and cooling consumed by the reporting company) emissions, looking at including Scope 3 (all other indirect emissions that occur in a company’s value chain) targets.

Fortescue Metals Group, this month, announced what it said is an industry-leading target to achieve net zero Scope 3 emissions by 2040, for example.

These are essential goals – and ones that all interested parties are calling for – in order to deliver on the Paris Agreement, yet many miners are not yet in the position to deliver on them, according to Pearce, Molyneux, Rawlings and Bowden.

“Miners need to look at decarbonisation at a holistic level across their operations and value chain, and cannot just delegate the net zero requirements to individual assets,” Rawlings said. “The solutions needed require investment and are often at a scale well beyond individual assets/sites.”

Much of this decarbonisation effort mirrors other industries, with the use of alternative fuels for plant and equipment, accessing renewable electricity supplies, etc, they said.

Process-specific activities can present challenges and is where innovation is required.

“These hard to abate areas are where a lot of efforts are currently focused,” Rawlings said.

Tied into this discussion is the allowance and estimates made for carbon.

There has been anecdotal evidence of miners taking account of carbon in annual and technical reports – a recent standout example being OZ Minerals inclusion of a carbon price in determining the valuation of its Prominent Hill shaft expansion project in South Australia – but there is no current legislation in place.

“We are seeing a broad spectrum of price and sophistication (targeted audience, knowledge level), but it is an active board level discussion for most clients,” Bowden said on this subject. “Most clients view this as market-driven requirements as opposed to a voluntary disclosure.”

This has been driven, in part, from the recommendations of the Task Force on Climate-Related Financial Disclosures, which many miners – including all the majors – are aligning their reporting with.

Some clients are also looking into scenarios to work around carbon regimes such as the Carbon Border Adjustment Mechanism, which proposes a carbon-based levy on imports of specific products.

Having acquired several companies in recent months focused on the low carbon economy transition – such as E4tech, Element Energy and RCG – ERM feels best placed to provide the technical expertise and experience to deliver the sustainable energy solutions miners require to decarbonise their operations.

“With these companies, combined with ERM’s expertise, it means we can support clients on the decarbonisation journeys from the initial strategy and ambition development through to implementation and delivery of their roadmaps,” Rawlings said. “We can support clients from boots to boardroom as they assess decarbonisation options and technologies; help them understand the financial, policy and practical aspects linked to deployment of solutions; and access the financing necessary to support deployment.”

ESG dilemmas

There is more to this evolving backdrop than setting and meeting ambitious environmental goals, yet, in ERM’s experience, the advice provided by consultants – and requested by miners – has historically been focused on individual ESG domains.

“This has often been driven by their realisation that their (miner’s) in-house policies and standards require updating,” Pearce said.

Louise Pearce, ERM Global Mining Lead

A siloed or disaggregated approach to ESG strategy development often reduces risk, but rarely generates value for the enterprise at hand, according to Pearce.

“What we have learned is that in order for organisations to create value, they need to focus on value drivers for the corporation,” she said. “These value levers are typically influenced by an integrated suite of ESG dimensions. For example, this could be looking at carbon emissions, connected with water use and nature, connected with local socio-economic development.”

“Sustainability and ESG are about understanding the inter-relationships between our social, natural and economic environments over the longer term. It cannot be about addressing one topic at a time or responding to the loudest voices.”

This is where ERM’s ‘second-generation’ ESG advice, which is driven by data and opportunities to create value as well as manage risk, is fit for the task.

“We are also finding that, at its heart, the central issue to second-generation ESG performance delivery/improvement for our clients is not just the strategy, but a willingness of organisations to reflect on their core values, how these have driven their traditional approaches and decisions and how they will need to evolve these if they want to achieve a genuine brand and reputation for ESG and achieve impact on the value drivers they have selected,” she added.

Such thinking is proving definitive in ERM’s mining sector mergers and acquisition due diligence.

“We have multiple experiences where clients have asked us to carry out an ESG review of a target portfolio, only to find that there is too great a gap between the target’s ESG asset footprint to align them with the client’s standard – or, that the carbon, water, closure or tailings profile of the target carries a too high-risk profile,” Molyneux said.

This is presenting clients with a dilemma as they want to increase their exposure to certain minerals, but are, in some instances, finding M&A is a too high-risk route. At the same time, the lead time to find and develop their own new assets is longer than they would wish for building market share.

Such a market dynamic opens the door for juniors looking for assets early in their lifecycles, yet it places a high load on the management teams of these companies to think strategically about the ESG profile of the asset they are setting the foundations for to eventually appeal to a potential acquirer.

“This is, in itself, a dilemma because, typically, the cash scarcity at the junior stage leads management teams to focus on the immediate technical challenges, sometimes at the cost of also addressing the priority non-technical challenges,” Bowden said.

Those companies who can take a strategic view on the ESG requirements of the future – rooted in a deep understanding of how to deliver change on the ground – will be best placed in such a market, and ERM says it is on hand to provide the tools to develop such an appropriate approach.

(Lead photo credit: @Talaat Bakri, ERM)

ICMM members pledge to reach ‘net zero’ by 2050 or sooner

Members of the International Council on Mining and Metals (ICMM) have committed to a goal of net zero Scope 1 and 2 greenhouse gas (GHG) emissions by 2050 or sooner, in line with the ambitions of the Paris Agreement.

This landmark commitment was made in an open letter signed by the CEOs of ICMM’s company members.

Although the companies within ICMM have individual decarbonisation targets, which in some cases go beyond ICMM’s collective commitment, this represents a joint ambition.

“The rate and nature of the ultimate decline in emissions will vary across the different commodities and geographies represented by our diverse membership,” the ICMM says. “Yet our approach to individually setting and meeting targets will be consistent and include the following, no later than the end of 2023 where these do not already exist:

  • “Setting Scope 1 and 2 targets: we will build clear pathways to achieving net zero Scope 1 and 2 GHG emissions by 2050 or sooner, through meaningful short and/or medium-term target;
  • “Accelerating action on Scope 3 GHG emissions: we recognise that Scope 3 is critical to minimising our overall impact and we will set Scope 3 targets, if not by the end of 2023, as soon as possible. Although all Scope 3 action depends on the combined efforts of producers, suppliers and customers, some commodities face greater technological and collaborative barriers than others. We will play a leading role in overcoming these barriers and advancing partnerships that enable credible target setting and emission reductions across value chains;
  • “Covering all material sources: our targets will cover all material sources of emissions, aligning to the GHG Protocol definition of organisational boundaries and materiality;
  • “Focusing on absolute reductions: for some operations, intensity rather than absolute targets may be more appropriate in the short and medium term. Where intensity targets are used, we will disclose the corresponding absolute increase or decrease in GHG emissions;
  • “Applying robust methodologies: we will use target-setting methodologies that are aligned with the ambitions of the Paris Agreement and disclose in detail the assumptions we use; and
  • “Disclosing openly and transparently: we will report our progress on Scopes 1, 2 and 3 annually, obtain external verification over our performance, and report in alignment with the recommendations of the Task Force on Climate-related Financial Disclosures.”

These commitments are additional to and have been incorporated into an update of ICMM’s Climate Change Position Statement which had several pre-existing commitments on performance and disclosure. Action on climate change is an integral part of ICMM’s Mining Principles, representing the comprehensive commitment to a responsible mining and metals industry, it says.

Rohitesh Dhawan, CEO, ICMM, said: “As the suppliers of the minerals and metals that are critical to decarbonisation and sustainable development, we have a particular responsibility to minimise the impact of our operations on the environment. ICMM members’ collective commitment to net zero Scope 1 and 2 GHG emissions by 2050 is a pivotal moment in our history. We are speaking with one voice, representing approximately one third of the global mining and metals industry – including more than 650 sites in over 50 countries – so that we drive emissions reduction at a significant scale.

“ICMM members have and will continue to set meaningful short and/or medium-term targets to build clear pathways to achieving this goal, while also accelerating action on addressing Scope 3 emissions and enhancing disclosure. We encourage other mining and metals companies, suppliers and customers to join us in decarbonising commodity value chains so that we collectively accelerate climate action in our wider industry.”

Gonzalo Muñoz, UNFCCC High Level Climate Action Champion, added: “I welcome the leadership and joint ambition of ICMM members to commit to a goal of net-zero Scope 1 and 2 GHG emissions by 2050 or sooner, and I strongly encourage companies to set scope 3 GHG emissions reduction targets by the end of 2023. The High-Level Climate Action Champions encourage members to strive to set the most ambitious science-based targets possible in line with the criteria of the Race to Zero campaign.”

Rio Tinto Japan joins GVC Network as part of carbon footprint reduction plan

Rio Tinto Japan has joined Japan’s Green Value Chain Platform Network (GVC Network), a collaboration established by the Ministry of the Environment to lead transparent decarbonisation efforts in the country.

Representative Director and Rio Tinto Japan President, Bill Horie, said: “We are honoured to be welcomed into the Ministry of Environment’s GVC Network and look forward to engaging on innovative approaches with customers, government and industry to help reduce Japan’s carbon footprint.”

Formed in 2018, GVC Network member companies work to set science-based targets for emissions reduction that are economically feasible and effective for the achievement of their Scope 1, 2 and 3 targets; and to share solutions related to renewable energy, energy conservation, or energy storage, Rio said.

Rio Tinto aims to reach net zero emissions across its operations by 2050. Its efforts to support decarbonisation through state-of-the-art solutions such as START Responsible Aluminium – a leading traceability program – aligns with the GVC Network intentions, the company added.

The GVC Network collaborates formally through networking and has 141 members representing a variety of industries including: electronics, machinery and equipment, automotive, airline, pharmaceutical, chemical, cosmetics, building and construction, real estate, housing, printing, food and beverage, marine, retailing, publishing and logistics.

To help reach net zero emissions across its operations by 2050, Rio Tinto is targeting a reduction in emissions intensity by 30% and in its absolute emissions by 15%, both by 2030 and from 2018 levels. The company also plans to spend around $1 billion over five years on emissions reduction projects, research and development and activities to enhance the climate resilience of our business.

Rio Tinto has outlined a series of measurable and impactful Scope 3 emissions reduction goals to guide its approach, which features partnerships across China, Japan and South Korea – countries which account for 88% of the company’s value chain emissions (Scope 3).

The company has also committed that its growth over the next decade will be carbon neutral.

Rio Tinto investigates Heliogen’s AI-backed solar technology to decarbonise Boron ops

Rio Tinto and renewable energy technology company, Heliogen, have announced an agreement to explore the deployment of Heliogen’s solar technology at Rio Tinto’s borates mine in Boron, California.

Under a memorandum of understanding, Heliogen will deploy its proprietary, artificial intelligence (AI)-powered technology at the Boron operation, where it will use heat from the sun to generate and store carbon-free energy to power the mine’s industrial processes.

The two companies will begin detailed planning and securing government permits for the project, with the aim of starting operations from 2022. They will also use the Boron installation to begin exploring the potential for deployments of Heliogen’s technology at Rio Tinto’s other operations around the world to supply process heat, which accounted for 14% of Scope 1 & 2 emissions from the group’s managed operations in 2020.

Heliogen’s high-temperature solar technology is designed to cost-effectively replace fossil fuels with sunlight for a range of industrial processes, including those used in mining. At Rio Tinto’s Boron mine, the company’s proprietary technology will use AI to control a network of mirrors that concentrate sunlight to capture energy used to make steam, the companies said. Heliogen’s system will also store the captured energy in the form of heat, allowing it to power night-time operations and provide the same uninterrupted energy stream offered by legacy fuels.

The Boron operation mines and refines borates into products ranging from fertilisers to construction materials and is producing lithium carbonate from a demonstration plant. The site currently generates steam using a natural gas co-generation plant and natural gas fired boilers. Heliogen’s installation will supplement these energy sources by generating up to 35,000 pounds per hour (15.9 t/h) of steam to power operations, with the potential to reduce carbon emissions at the Boron site by around 7% – equivalent to taking more than 5,000 cars off the road. Rio Tinto will also be assessing the potential for larger scale use of the Heliogen technology at Boron to reduce the site’s carbon footprint by up to 24%.

Heliogen’s mission of slashing global carbon emissions by replacing fossil fuels with sunlight, as well as its focus on industrial sectors, made it an ideal partner for Rio Tinto, which is committed to decarbonising its global operations, it said.

Rio Tinto Chief Executive, Jakob Stausholm, said: “This partnership with Heliogen has the potential to significantly reduce our emissions at Boron by using this ground-breaking solar technology, and we look forward to exploring opportunities across our global portfolio.

“Addressing climate change effectively will require businesses, governments and society to work together through partnerships like this one, to explore innovative new solutions throughout the entire value chain. Our work with Heliogen is part of Rio Tinto’s commitment to spend approximately $1 billion on emissions reduction initiatives through to 2025 and our commitment to work with world-leading technology providers to achieve this goal.”

Heliogen CEO and Founder, Bill Gross, said: “Since its founding, Heliogen has been laser-focused on decarbonising industrial sectors, including mining. As a result, this agreement with Rio Tinto is incredibly gratifying.

“We’re pleased to find a partner committed to cutting its contributions to climate change. We’re also pleased that Rio Tinto is exploring our technology to play an important role in helping reach its sustainability goals while dramatically reducing its energy costs. More broadly, we’re excited to take this important step as we pursue Heliogen’s goal of avoiding more than 1 gigaton of CO2 emissions – 5% of the world’s annual total – from the global economy by turning sunlight into an industrial energy source.”

Komatsu commissions Australia’s first Tier 4 Final ultra-class haul truck

In an Australia first, Komatsu has commissioned the inaugural Tier 4 Final version of its 930E-5 ultra-class mining truck in Australia.

The commissioning is part of the company’s commitment to designing and manufacturing mining equipment that, it says, advances its corporate social responsibility aims while embracing UN Sustainable Development Goals.

This latest factory-designed emission control technology solution, which meets the most stringent North America and EU emissions regulations, has been adopted by Komatsu Australia to meet a client’s specific operational needs, the company said.

“Komatsu has a strong commitment to environmental best practice, with a continuous focus on reducing our environmental impacts and our carbon footprint,” Jason Arthur, Komatsu’s National Product Manager – Mining, said.

“Our ongoing research and development efforts include developing new products that significantly reduce fuel consumption as well as greenhouse gas emissions.”

Komatsu’s Tier 4 Final compliant, 290-t payload 930E-5 incorporates on-board after-treatment system that significantly reduces the Scope 1 emissions produced during the haulage process at mines, the company says.

These emissions are an unavoidable by-product of the high temperature combustion process in the diesel engines that power most mining equipment, Arthur explained.

“This emission reduction technology is an option that now can be incorporated into Komatsu’s class leading 930E-5 model,” he said. “To achieve this, Komatsu worked with our large horsepower engine partner Cummins to provide a simple, low maintenance solution to meet Tier 4 Final emissions requirements.”

The Cummins-sourced engine treats particulate matter in the engine cylinders through an advanced high-pressure fuel injection control system to reduce PM 2.5 by 80% (compared with Tier 2 engine levels). In turn, the nitrogen oxide greenhouse gas emissions are treated out of cylinder through a selective catalytic reduction (SCR) after-treatment process.

This modular SCR system consists of an airless diesel exhaust fluid (DEF) dosing system and features an integrated decomposition chamber with a maintenance strategy that aligns with the life of the engine. The SCR units are contained within the truck’s rear-exiting exhaust system.

Komatsu’s use of the flow-through exhaust aftertreatment system delivers ultra-low emissions while increasing fuel efficiency without increasing backpressure, according to the company.

Critical engine parameters are monitored by the integrated engine management system to ensure optimised DEF consumption, Arthur said.

Tier 4 emission technology is a small portion of Komatsu’s overall emission reduction strategy, with the company continuing to actively invest in research and development projects that focus on reducing customers’ Scope 1 emissions and using alternate energy sources, the company said.

In addition to meeting the technology challenges in developing a Tier 4 Final compliant version of the 930E-5, the customer also requested Komatsu provide a truck with significantly lower noise emission levels.

“Our US-based Komatsu Engineering team became intimately involved and created a factory-engineered sound suppression solution that would meet our customer’s requirements,” Arthur said. “These factory-designed sound treatments more than halved the standard truck’s emitted sound power levels, resulting in a target sound power level of less than 113 dBA.

“Successfully achieving these sound levels was a very challenging undertaking for a large mining truck powered by an engine with an output of 2,700 hp (2,014 kW).”

OZ Minerals on the road to electrifying Carrapateena mine

OZ Minerals’ electrification transformation at its Carrapateena copper-gold operation in South Australia has kicked into another gear with a Zero Automotive ZED70 battery-electric light vehicle arriving on site.

The company has made its electrification and sustainability aspirations clear to stakeholders, confirming it is working towards emitting zero Scope 1 emissions and striving to systemically reduce Scope 2 & 3 emissions across its value chain. It also wants to consume and produce in a way that generates zero net waste and creates value for its stakeholders.

In June, a prefeasibility study on an expansion of Carrapateena included a trial of electric light vehicles and establishment of a renewable energy hub.

The precursor to the ZED70 Ti electric light vehicle developed in partnership with Zero Automotive, the ZED70 (pictured) is based on a Toyota Landcruiser 79 Series and uses either NCM (Nickel Cobalt Manganese) or LTO (Lithium Titanate Oxide) battery chemistry.

The vehicle comes with continuous power of 75 kW and peak power of 134 kW, plus 358 Nm of continuous torque. Depending on the selected battery chemistry, the battery capacity comes in at 88 kWh (NCM) or 60 kWh (LTO).

The ZED70 Ti electric light vehicle to be delivered to Carrapateena following the trial of the ZED70 will use LTO chemistry and come equipped with a specially selected battery housing, control systems and charging capability to endure the “hyper saline underground environment” at Carrapateena.

“Working in partnership with Zero Automotive, we recently welcomed the first electric light vehicles onto site, and have the ZED70 Ti model in use underground,” Oliver Glockner, the OZ Minerals lead in developing the ZED70 Ti with Zero Automotive, said. “This is has been well received on site as a significant step in our electrification roadmap towards no diesel particulates underground and no scope 1 emissions on site.”

Dan Taylor, Business Development Manager at Zero Automotive, told IM that OZ Minerals has worked closely with the company in finalising the vehicle requirements and the change management process for implementing a battery-electric vehicle at the mine site.

“Some of the things I am talking about here include:

  • “Regular communications with their team on the progress with the project;
  • “Establishing charging points at the mine;
  • “Organising trial test drive bookings with those employees interested, and collecting performance data and feedback from them;
  • “Testing charging of the vehicle from one of their generators;
  • “Reviews by the emergency services and maintenance teams; and
  • “Planning the site acceptance testing when the OZ Minerals vehicle is delivered.”

Taylor said the LTO batteries the ZED70 Ti is fitted with can travel around 3 million km or endure 20,000 recharges before the battery re-charge ability reduces by 20%. This compares favourably with the 475,000 km, or 1,200 charges, it would take for the NCM battery’s re-charging ability to drop by the same amount.

At the same time as this, the LTO battery system will charge to a 95% charge in three hours on 415 V three-phase power, compared with four-and-a-half hours for the NCM equivalent.

“With DC-DC fast charging you will need 30 mins on the LTO (two hrs for NCM),” Taylor added.

Such benefits outweigh the lower energy density and upfront expense that come with using these LTO batteries, according to Taylor.

In October, OZ Minerals became the first miner in Australia to take delivery of a battery-powered Normet Charmec MC 605 VE SmartDrive (SD) at Carrapateena.