Tag Archives: South Africa

Byrnecut to dig into Orion’s Prieska copper-zinc underground project

Orion Minerals Limited says it has concluded a memorandum of agreement with mining contractor Byrnecut Offshore envisaging an alliancing agreement for underground mine development and production at the Prieska copper-zinc project in the Northern Cape province of South Africa.

The agreement follows the announcement of the grant of the Mining Right for the Prieska copper – zinc mine and, Orion says, “paves the way for Byrnecut to bring the benefit of its experience to the development and operation of the Prieska project which is intended as a global-best practice mechanised mining operation”.

Orion has achieved several milestones in the 16 months since the submission of the Mining Right application, including the announcement of a black economic empowerment (BEE) partnership, the upgrading of the Prieska mineral resource to 30.49 Mt at 1.2% Cu and 3.7% Zn and the completion of the Prieska Bankable Feasibility Study (BFS).

While the Foundation Phase BFS demonstrated strong project economics with a post-tax net present value (8% discount) of A$408 million ($273 million), Orion says it has already identified numerous opportunities to improve on the mining plan set out in the BFS and has commenced work with post-BFS field trials, optimisation and refinement studies.

Key terms of the agreement with Byrnecut are that the parties will seek to enter an alliancing agreement related to underground mining at the Prieska project, whereby Byrnecut will undertake to provide underground mine development and mine production services; commit to promoting local employment and skills transfer in support of transformation of the industry; and commit to collaborating with local BEE enterprises.

Formalising the agreement is one of the key project development milestones that follow the release of the BFS for the establishment of high margin and long-life underground mining operations at the Prieska project. The planned foundation phase of operations would result in the mining and processing of 2.4 Mt/y of run-of mine feed for 10 years, to sell approximately 21,000 t of copper and 70,000 t of zinc as differentiated concentrates each year.

Other post-BFS workstreams in progress to prepare the project for execution include third-party peer reviews of the BFS in preparation for funding discussions, the value engineering of components of the BFS, mine-to-market business plan optimisation using the Whittle Enterprise Optimisation process, pilot-scale water treatment field trials of the water accumulated in the underground excavations and the expedition of the various ancillary licences required to operate a mine. The company said substantial progress is being made in all areas.

Orion’s Managing Director and CEO, Errol Smart, said: “We are delighted to include Byrnecut into the list of partners we will be working with to establish what will be another world-class mine in the Northern Cape.

“Byrnecut has an impressive reputation on the African continent both in terms of their operational proficiency and their approach to skills transfer and harmonious relations with local communities. Their involvement in developing Prieska will be invaluable.”

Weba Chute Systems and Kwatani save the day at South Africa gold mine

Weba Chute Systems and Kwatani have come together to design and install ore silo chutes at a South Africa gold mine to reduce mill wear and other processing challenges caused by the uncontrolled flow of mined material into the mills.

The solution from Weba and Kwatani, a leading local manufacture of vibrating screens and feeders, must also deal with frequent large-size material as the mine has no crushing stage before the milling circuit, Weba said.

According to Weba Chute Systems Technical Advisor, Alec Bond, the over-feeding of material through the existing manually operated chutes is causing regular “mill vomit” in the mine’s four mills. The inconsistent feed exacerbates wear on mill bearings as the material’s weight shifts forwards and backwards inside the mill.

The waves of material causing the “vomit” carry insufficiently milled material out of the mill, including large chunks of rock. This leads to problems for the downstream mineral processing facilities, including inefficient recovery in flotation cells and even blockages in pumps, according to Bond.

“The challenge starts with the existing chutes needing constant supervision and control by operators, being opened and closed with a chain block device,” he says. “Our solution was to design a robust, self-controlling chute and feeder system that would ensure an even flow of material into the mills.”

He explained that the mine’s existing system has no means of closing the silo outlet; any maintenance at the chute area requires the emptying of the silo and the stoppage of the mill. Each of the four silos has three outlet chutes.

Weba Chute Systems Designer, Wesley Hunkin, says: “We therefore added a spile bar arrangement which seals off the silo. The Weba chute, which is choke fed, is placed under this installation. This allows the feed rate to be controlled by the Kwatani feeder, which has been integrated into the chute design.”

The vibrating action of the feeder controls the tonnage and feed rate to the mill, keeping the flow constant. New mounting structures have been designed to accommodate each chute and feeder. There will also be civils works below the silo to provide a solid foundation that absorbs vibrations from the feeder, according to the companies.

A serious challenge is over-sized rocks in the ore feed, which can be up to 800 mm in size. This makes it important for chute designs to accommodate the worst-case scenario of chutes choking, says Hunkin.

He highlighted that the flow of material is also controlled to prevent direct impact onto the conveyor belt feeding the mills, and to ensure central loading onto the centre of the belt.

“If the material from the feeder is biased to the one side, our chute brings everything to the centre of the conveyor,” he says. “This enhances the consistency of material flow into the mill.”

Bond emphasised that the customer motivated for a concept change to address the challenges being experienced with the silo feed.

“Given our materials handling experience, design expertise and high-quality local manufacturing facility, we were able to work closely with the customer and with Kwatani to turn this new concept into reality,” he said.

“Our solution promises direct savings in terms of mill bearings, as well as less mill downtime. There will also be significant gains in terms of recovery rates in the plant if the flow and size of milled material can be improved.”

Amplats set for shock-break and coarse particle recovery technology trials

Anglo American Platinum, in its June quarter results presentation, has provided further detail on a range of initiatives it is working on as part of its “P101” and FutureSmart™ initiatives.

The company has been pursuing these developments to “drive improvement in operational performance from current levels”. The P100 benchmark represents “best in class in the industry”, while P101 represents operating assets and equipment at levels beyond what is currently thought to be possible in the industry.

Amplats has previously mentioned several technologies it is working on as part of its FutureSmart development, including “coarse particle flotation, which can reduce energy intensity by over 30%; advanced fragmentation and shock-break technology at concentrators, which has the potential to also reduce energy intensity by 30%; and fine recovery of chrome and PGMs, in conjunction with bulk sorting, which can lead to a 10% increase in feed grade and recoveries”.

In the June quarter results presentation, the company said it had made some headway on many of these.

In terms of bulk sorting technologies, which majority-owner Anglo American has been using in trials at the El Soldado copper mine, in Chile, Amplats said technology evaluation was progressing at its Mogalakwena PGM mine, in South Africa.

With the shock-break technology, Amplats said it had an “evaluation unit” installed at its Baobab concentrator, also in South Africa. Amplats has access to this concentrator through an agreement it signed with Lonmin (now part of Sibanye-Stillwater) a few years ago, with the company, previously saying use of the concentrator would allow it to process excess ore and unlock value at Mogalakwena (dispatch control room pictured).

The shock-break technology Amplats refers to uses VeRo Liberator® technology from PMS GmbH. Gregor Borg from PMS told attendees at MEI’s Physical Separation conference in Falmouth, UK, in June, that on an industrial scale, Amplats had already applied two customised VeRo Liberators at its South Africa platinum operations and had ordered a third which is due to be shipped. All three were specially designed to be used in industrial‐scale pilot tests at the miners’ operations, he said.

Coming back to P101, Amplats said its Shovel Performance project was in progress at Mogalakwena. This is seeking to increase the rope shovel performance at the mine from 26 Mt/y to over 45 Mt/y.

The coarse particle recovery technology – a core part of the company’s plan to ultimately eliminate tailings dams, according to Anglo American Technical Director, Tony O’Neill – is set for trials at Amplats’ operations in 2020, the company said.

At the same time as this, there was a fine particle recovery concept study in progress, as well as a prefeasibility study on fine chrome recovery, Amplats said.

Boart Longyear achieves B-BBEE status in South Africa

Boart Longyear says it has received certification of compliance to the Broad-Based Black Economic Empowerment (B-BBEE) initiatives established by the South African Department of Trade and Industry.

The official B-BBEE verification certificate was presented to local Boart Longyear management on June 27 by the South African National Accreditation System (SANAS), with independent auditing and full verification completed by Moore Stephens, Boart says. This means Boart Longyear, under the legal entity Longyear South Africa Pty Ltd, has achieved a B-BBEE Level 4 contributor status through June 26, 2020.

Based on the B-BBEE contribution levels used to score companies on specific empowerment criteria, Boart Longyear’s Level 4 status was achieved through its ratings on ownership, management, skills development, enterprise, supplier and socio-economic development, according to the company.

Jeff Olsen, President and CEO of Boart Longyear, said: “We are proud of our South African employees and their earnest efforts to gain this important recognition. We believe in the development of our people and the community. We are dedicated to providing equal employment opportunities and increasing the diversity of our workforce.”

B-BBEE certification establishes codes of fair practice in South Africa and provides an added value to accredited companies in building relationships with the community, suppliers, and customers, according to the company.

Andre Van Heerden, South African General Sales Manager, said: “The B-BBEE certification is about recognising where we are now and our continued commitment to transforming our organisation to grow our team and benefit our employees and the communities in which we operate.”

As well as incorporating B-BBEE initiatives, Boart is involved in employee training programs, supplier development programs to bring previously disadvantaged people into the workplace, and supports the local Bethany House Trust, a charity for the children and youth of South Africa, the company said.

Multotec ready for the mineral processing test

Mineral processing specialist, Multotec used a recent media visit to talk up the testing facilities at the heart of its Technology Division.

The South Africa-based company can carry out a range of testwork with its specialised equipment in Spartan, Gauteng, according to Multotec Technology Manager, Faan Bornman.

“Much of our testwork comes from customers who are in the early stages of project development,” Bornman says.

“They need to understand more about how their minerals or material will separate under given conditions. Often there is not a mathematical model that can predict accurately what they can expect.”

Testwork can reduce project risk significantly, providing a solid foundation for the subsequent design and optimisation of process facilities, Multotec says, with Bornman noting that physical testwork is usually the best way of finding out how particles will behave in a process plant.

The equipment available to Multotec customers includes laboratory-scale wet high-intensity magnetic separators, cyclone rigs, filtration equipment, centrifuges, spiral rigs and a screening research rig. There is even capacity to test water purification methods on mine effluent.

“Extensive test work is especially relevant when a customer is wanting to mine and treat less traditional minerals like lithium or graphite,” Bornman says. “As demand grows for commodities like these, we have had customers bring samples to test how our equipment would perform. In these tests, we trial various methodologies and scientifically record and compare the results.”

The R&D laboratory prepares samples and conducts particle size analysis using equipment such as pressure filters, drying ovens, sieves, shakers, sizers and separating funnels. When chemical analysis is required, samples are sent to outside laboratories.

Bornman said his division also receives enquiries from existing customers when they face challenges: “We research the application of different methodologies to customer material, often leading to the development of a new product or improvements to our existing products,” he said.

“In addition to providing a solution for the customer, we are also able to contribute to the efficiency of the industry as a whole, with an updated and commercialised product.”

Screening

When it comes to tests on mineral screening, a test rig – located at Multotec’s Spartan headquarters – delivers two primary benefits, according to Chris Oldewage, Technology Manager at Multotec Manufacturing. First, it facilitates the in-house development process of screening media products. Second, it allows screening media to be tested against customer requirements to ensure the right solution is delivered.

“The ongoing research and development behind our screening media products give the industry opportunities to optimise efficiencies and recoveries,” Oldewage says. “However, changing anything on a plant brings risk of unexpected downtime. Our screening test rig can considerably reduce operational risks by proving any changes before they are implemented on site.”

In the controlled environment provided by the screening test rig, customers can view the actual performance of screening media products with material from their mining operations, Multotec says, with the company’s testing protocols generating the data necessary for detailed process analysis. This facilitates well-informed subsequent decisions, the company said.

The screening rig is made up of three test platforms: a vibrating screen, a sieve bend and a static drain screen platform. The vibrating screen can conduct classification tests, wet and dry dewatering tests, product development tests and plant screen simulations. The static drain screen and sieve bend screening test platforms are wet classification, drainage and dewatering tests.

Multotec Process Engineer, PJ Pieters, said accurate scaling of a customer’s on-mine process is vital for achieving representative and relevant test results.

“We gather a range of key data from customers on our test work questionnaire,” Pieters said. “This includes their material tonnages, volumes of water, screen sizes in operation and aperture sizes on panels among other information.”

This ensures sample sizes are representative and the tests accurately reflect what is taking place in the mine’s processes. Tests, meanwhile, are conducted in triplicate runs to ensure a sound scientific basis for the findings.

Oldewage said: “By removing the risk that mines face in trying new solutions, our testing capability smooths the way for valuable innovation to improve screening performance.”

The screening test facility at Multotec also includes a small Lucotec screen and a small wedgewire trommel screen, both for small-scale verification test work.

Cyclones

Multotec’s large scale cyclone rig, meanwhile, can test the performance of a range of cyclone sizes, up to 450 mm diameter. Tests related to classification, desliming and dewatering, as well as dense medium separation using density tracers, can be conducted.

Among the benefits to customers is the ability to test large volumes of samples, as the rig includes a 1,750 litre sump and a 6/4 pump, Multotec said. Flexibility is provided by a variable speed drive connected to the pump, to vary the flow rates as required by the cyclone size.

Dry samples usually need to be blended before testing, and wet samples may need to be dried before blending. The resulting samples from the test must also be scientifically prepared for particle size and chemical analysis. The precision at each stage is vital, as bulk samples as large as 200 kg may need to be reduced to as little as 100 g.

The rig’s infrastructure also includes two Multotec vezin samplers, which are compliant with the highest design standards to provide reliable samples, according to Multotec. “These help to minimise the common errors of manual sampling and ensure that the integrity of the sample is retained,” the company says.

In addition to using the test rig to analyses the customer’s process flowsheet – with Multotec engineers identifying where its range of classification and other products can add value – the company also uses the cyclone test rig for its own product development.

“This on-going process has resulted in a range of cyclones that are lighter, more cost effective, environmentally-friendly and energy efficient,” the company said. “They all contribute to helping customers lower their cost per tonne in a low footprint, sustainable plant operation.”

Spirals

Multotec says its spiral test rig has been adapted in response to the industry’s need to re-treat chrome dumps and upgrade ultra-fine chrome.

Again, located at the company’s headquarters in Spartan, the rig allows eight to 10 different spirals to be erected at a time.

Jeantelle Rust, R&D Engineer at Multotec Process Equipment, said: “With the drive to process tailings in the chrome sector, we have been running tests on a more compressed spiral with a reduced pitch. This reduces the velocity of the very fine particles.”

This configuration works particularly well when dealing with fine material, hence its application in tailings, Rust said. The spiral could offer a cost-efficient way of separating ultra-fine chrome material and recovering valuable product, according to the company.

Rust said: “Such a solution presents an attractive commercial proposition to industry and will also address environmental concerns presented by tailings dumps.”

Using a “mouth-organ product box”, the material being tested on the spiral rig is split into eight product fractions, not just the usual three for product, middlings and tailings. This helps optimise the mass balance for reporting purposes, according to the company.

The spiral test rig has also been used to evolve designs that deal with coarser material, Multotec said. “Customers were looking for a solution to the ‘beaching’ of coarse coal product on the spiral’s surface, for instance,” it explained.

Rust said: “We were able to modify the angles and diameter of the trough to address this challenge. Our ability to make small adjustments to the equipment, and to test material repeatedly at full scale, is the key to finding practical solutions.”

Multotec has also conducted research for producers of mineral sands where head grades were steadily dropping. This necessitated the treatment of larger tonnages, requiring higher capacity spirals.

“Space constraints on the customer’s site meant that adding spirals to their process was not an option,” Rust said.

“Wider spirals were thus tested for higher throughput, with different angles to minimise losses.”

 

Nippon thermal fragmentation tech proves its worth at AngloGold narrow vein mine

Nippon Dragon Resources has revealed more details about testing of its exclusive and patented thermal fragmentation technology in South Africa following a recent presentation from AngloGold Ashanti.

The company’s South Africa distributor, MaXem, who attended the open-day presentation organised by the Mandela Mining Precinct, provided the details, Nippon said.

Nippon’s thermal fragmentation process for narrow vein mining involves drilling a series of 6 in (15 cm) pilot holes into the vein with a conventional drill. Thermal fragmentation (thermal head, compressed air and water) is then inserted and spalls the rock, quickly increasing the diameter of the hole to 30-110 cm. After this, ore can be extracted in 0-13 mm fragments. The leftover rock between fragmented holes is then broken to recover the remaining ore.

This precision allows for the extraction of high-grade precious and base metal veins without dilution, according to Nippon.

AngloGold Ashanti, which is a MaXem client, said over 200 holes were drilled and fragmented using the thermal fragmentation technology at one of its underground operations in South Africa. Of these holes, several exceeded 30 m in length.

One of the objectives of the test work was to drill, fragment, clean and backfill a hole within a 25-hour period; an objective the company achieved, Nippon said, adding that over the 200 holes completed, productivity ranged from between 3-6 t/h.

Two other projects are currently under review by the Non-Explosive Rock Breaking Programme within the Mandela Mining Precinct, MaXem and other partners, according to Nippon. One of these is the spallability classification of different rock types and the other is the employability of the thermal fragmentation technology within the platinum sector.

The Mandela Mining Precinct is established as a public and private partnership between the South African Government, the mining companies, manufacturers of mining equipment, research organisations and academia to foster collaboration and innovation. It “assists the mining industry in bringing change to processes, technologies, skillsets and social and environmental impacts associated with current mining through the modernisation of mines via mechanisation and automation”, Nippon says.

Weir’s Warman AHF slurry pumps cut through the froth in South Africa

Weir Minerals’ Warman® AHF pumps have been put to the test at two mines in South Africa’s Limpopo Province, the company said.

The pumps were tasked with pumping frothy, high density and viscous slurries at the platinum and phosphate mines.

Weir said: “Handling froth in some process circuits can be very challenging, as froth will air-bind a conventional slurry pump. In froth applications, the Warman AHF inducer impeller solves this problem, producing far less surging. The inducer impeller and oversized inlet enhance the movement of the froth, high density or viscous slurries into the impeller, facilitating effective transportation.

“In addition, its higher efficiencies mean a smaller pump will deliver the required results.”

At the platinum operation, a Warman AHF 2 pump was commissioned in early 2016. It has met the specified flow rate of 40 m3/h with no pump-related stoppages, repairs or replacements, according to Weir.

A 12-month trial period showed the unit saved the mine over R200,000 ($14,153) when compared with the cost of the competitor pump installed previously. Based on this, the mine replaced another eight competitor products with Warman AHF pumps, Weir said. It has approved the Warman AHF 3 pumps as standard for all frothy applications at the plant’s first flotation section, and Warman AHF 2 pumps for the second flotation section, the company added.

The Warman AHF pumps – with Hi Seal® expeller (dry gland) design – were also tested in a viscous slurry application at the phosphate mine in Limpopo for six months. According to Weir, they demonstrated they could continuously pump the high-density viscous underflow slurry at relative densities above 1.9. “As a result, the customer purchased the pump and began upgrading all the remaining concentrate thickener underflow pumps to the Warman AHF pump technology,” Weir said.

This reduced the plant’s operational costs significantly, decreased dewatering and concentrate moisture extraction operations, improved filtration efficiency and increased concentrate throughput to the dryers, according to Weir. The Warman AHF pump also extended the underflow pumping boundaries and the overall reliability of the thickener underflow pumping system.

“Other field and laboratory tests have proven that the Warman AHF pump has largely overcome the problem of high-density viscous underflow slurries, with negligible effects on head at slurry yield stresses up to 200 Pa,” the company said.

Jacques Pretorius, Weir Minerals Africa’s Pump Product Development Specialist, said the approach to solving any thickener underflow pumping problem must be based on a thorough understanding of the entire application, the mineralogy and rheological behaviour of the slurry.

“Successful thickener underflow pumping projects are only achievable through involving a team of thickener engineers, pumping engineers and rheological consultants,” he said. “Weir Minerals’ pump trial campaigns confirm the successful operability of the Warman AHF pumps in viscous slurry applications.”

FLSmidth takes nextSTEP in flotation technology at South Africa platinum mine

FLSmidth’s innovative nextSTEP™ rotor and stator flotation technology has proven itself at a large platinum mine in South Africa, the mineral processing company says.

According to Ricus van Reenen, Regional Product Line Manager – Separation at FLSmidth, the nextSTEP rotor and stator combination has been at work for over a year at the mine, achieving positive results.

“The customer has achieved significantly lower power consumption on the full-scale retrofits we installed early in 2018,” van Reenen says. “The more efficient design allows the same or higher slurry circulation at reduced rotor speed, leading to lower power draw.”

The retrofits have been applied to both primary and secondary flotation applications, where energy savings of over 10% have been achieved, according to FLSmidth.

Years of research and development have been invested in the nextSTEP technology, which was originally launched in 2015, the company says. Among the key design elements are the addition of slots to the stator, adjustments in the rotor profile and a parallel distance between the rotor and stator.

“Energy dissipation is now more uniform than in traditional forced-air designs,” van Reenen says. “This means a more even wear pattern across the rotor and stator, and therefore longer intervals between maintenance.”

In the South Africa installations, the wear on the rotors and stators has been minimal after more than a year’s operation, the company says. In one flotation cell, the equipment has been operational for 15 months. The thickness of the rotor has reduced from 65 mm to only 60 mm, and the stator from 75 mm to 70 mm. After 13 months of operation in the second installation, the wear is even less, with the rotor’s thickness having reduced from 65 mm to 63 mm and the stator going from 75 mm to 73 mm.

van Reenen highlighted that there have been other benefits experienced by South Africa users of the new technology. Among these has been 16-18% less blower air usage, with more concentrated bubble formation.

“Better turbulence energy dissipation around the rotor and stator region, with its related finer bubble size distribution, creates more surface area for bubble-particle attachment,” van Reenen says. “This has delivered more froth and a higher mass pull on our local units.”

The success of the nextSTEP technology has led to further retrofits being planned in South Africa, in line with FLSmidth’s drive to promote mines’ productivity and performance. Van Reenen says the intensive R&D process continues apace and is not just in the rotor and stator design but also includes areas such as smart control systems and continued digitalisation of process solutions.

Marthinusen & Coutts speeds up generator overhaul for South32 manganese plant

Marthinusen & Coutts, a division of ACTOM, says it has successfully completed a major overhaul on a 70 MVA generator set at South32’s Metalloys manganese plant, in South Africa, within six weeks.

The company, which worked in collaboration with business unit ACTOM Turbo Machines, was contracted by South32 to take full responsibility for the entire drive train refurbishment, it said.

According to Mike Chamberlain, Marthinusen & Coutts’ Marketing Executive, this achievement showcased the capacity of the divisions to take full control of large mechanical and electrical refurbishments. Chamberlain highlighted that the customer did not want to split the responsibility for the complete generator and turbine drive train between separate contractors.

“Marthinusen & Coutts and ACTOM Turbo Machines’ capabilities enable us to control the entire process, offering peace of mind to customers, coupled with optimised cost efficiencies,” Chamberlain said. “This also reduces customers’ risk and managerial effort in dealing with multiple suppliers.”

The scope included a complete inspection of the turbine rotor and internal components, as well as runout and dimensional inspection on the rotor. Inspections incorporated glass bead blasting and non-destructive testing of many components.

High-speed balancing of the 13 t rotor was conducted, and turbine rotor journals were repaired, according to the company. White metal bearings were relined, and the thrust bearing was modified to improve fitment in the bearing casing. Additionally, positive material identification tests were conducted on all the studs, nuts and shaft seals. A complete 3D scan was done of the centreline to allow reverse engineering drawings.

At is repair facility in Cleveland, Johannesburg, Marthinusen & Coutts also performed a number of inspections, tests and repairs on the rotor. Dimensional inspections and electrical tests were conducted, as well as non-destructive testing such as the phase array test. Slip rings were ground, the diode wheel was inspected, and the diodes were tested.

ACTOM Turbo Machines inspected and refurbished the auxiliary mechanical equipment. This included lubrication and control oil systems, pumps, coolers, and white metal bearings on ID and FD fans. ACTOM Turbo Machines Project Manager, Hannes de Jager, noted that an overhaul of this magnitude and scope would usually take over two months.

“The excellent working relationship we had with Metalloys’ technical staff, and the cooperation we got from them, certainly contributed to completing the work as quickly as we did,” de Jager said.

Starting the inspections, tests and repairs in July 2018, the team completed the overhaul by mid-August.

Anglo American’s FutureSmart Mining on its way to tangible technology results

“It’s clear that the pressures on us are unsustainable, whether it is around our carbon footprint, water footprint, or physical footprint, and we are always looking for different ways to push us in this future direction where our footprint will be very different.”

Tony O’Neill, Anglo American Technical Director, knows the company he works for is up against it when it comes to retaining its reputation as one of the world’s leading sustainable mining companies.

It’s clear from the company’s 2018 sustainability report – which saw it achieve a best-ever performance in terms of injuries, a cut in energy use and an increase in greenhouse gas emission savings – that Anglo is going down multiple paths to reach its goals. O’Neill, who joined the company almost six years ago, believes Anglo’s FutureSmart Mining™ programme will play a major role in confronting and overcoming many of the issues it (and the industry) is facing.

“If you look at FutureSmart Mining, at its absolute essence, it is about footprint; how do you change the footprint of mining? How do you have a mine that draws no fresh water? Mines without tailings dams? Mines that look very different?” he told IM.

“It’s getting people to believe there is a different way for mining in an industry that has, to this point, been quite traditional. It is not going to happen overnight, but I think we have a genuine vision that is, in my view, quite feasible.”

IM spoke with O’Neill and Donovan Waller, Group Head of Technology Development, this week to get to the bottom of how technology is making Anglo ever more sustainable.

IM: Could you explain how the Anglo operating model facilitates and fosters innovation within the context of FutureSmart Mining?

TO: The Anglo American operating model is the chassis that underpins everything, giving us certainty in the delivery of our work. When you have got that stability – and the lack of variability – in your business outputs, it is much easier to overlay new technologies and processes. When you then see a difference in operating or financial results, you can confirm it is down to what you have implemented, rather than the underlying processes.

I look at it a little bit like a three-legged stool: you have the operating model on one leg, the P101 benchmark-setting on another, and technology and data analytics on the third leg. They all co-exist in this system and work off each other. Without one, the stool falls over.

The operating model has given us a drumbeat of delivery, and we get the licence to innovate because of this drumbeat.

IM: Do you think FutureSmart Mining is starting to be understood and valued by investors?

TO: They’re awake to it now. I think it is still in the early stages of the story, but they can see what we are doing and the ambition behind it. Ultimately, it will result in a different investment profile, or more investors because of it, but I am not sure that it’s translated in full up to now. The recognition has been more around the general results of the company.

With all these technologies coming through – much of them driven by higher levels of data and the ability to interrogate that data – the vision we imagined way out into the future, I think, is a lot more tangible than when we started out four years ago.

IM: Out of all the tailings dam elimination work you are carrying out (around passive resistivity, fibre-optics, micro-seismic monitoring, coarse particle recovery, polymers, and dry stacking), which innovation will have an impact on Anglo’s operations in the next three-to-five years?

TO: All of them. We started out with our tailings programme in 2013; in fact, our group technical standards were re-issued at the beginning of 2014 and they are now one of the main guidelines the ICMM (International Council on Mining and Metals) uses.

Tailings dams have always been at the back end of the mining process and, in a way, the science behind them has never been part of the mainstream operation. Our view, internally for many years, is tailings dams are one of the industry’s greatest risks.

“Our view, internally for many years, is tailings dams are one of the industry’s greatest risks,” Tony O’Neill says

Ultimately our aim is to eliminate tailings dams. Period. Coarse particle flotation – getting that coarser particle size that drains much more freely – is core to that and you can see a development pathway there. For example, with some of these new flotation techniques, we now only need 1% exposure of the mineral for it to be effective. In the past, it was much higher.

When we upgraded the capability of our tailings organisation, it became clear we needed to get a lot more data off these tailings dams. About three years ago, we started putting fibre-optic sensors into the dams. We have since developed, through our exploration arm, passive resistivity seismic monitoring, which basically tells you where your water sits in the dams. And, we’re putting into Quellaveco micro-seismic measuring techniques, which will be more granular again. You can see the day coming really quickly where tailings dams are a real-time data source for mining companies.

We’re also, with our joint venture partner Debswana, building the first polymer plant in Botswana, which could have an impact on dry tailing disposal.

The thing we need to crack – both ourselves and the industry – is how to dry stack at scale. At the moment, that is still a work-in-progress, but it is doable in the long term.

IM: How is the bulk sorter you have operating at El Soldado, which is equipped with a neutron sensor, working? How has it made a difference to recoveries and grades at the operation?

TO: With the bulk sorter, we’re taking packages of tonnes rather than individual rocks to enable us to get both speed and volume. At El Soldado, we are sorting in four tonne packages. You can adapt the sorting profile by the characteristics of the orebody. We’re generally looking to sort tonnages that are less than you would put in a haul truck body or bucket.

If you step right back, in the past, most processing plants wanted to blend to get an average feed. We are going the other way. We want to use the heterogeneity of the orebody to its advantage; the less mixing we can get ahead of these sorting processes, the better it is for recoveries.

Being able to remove an orebody above the cut-off grade alongside waste tonnages and upgrade the latter has led to an effective lift in head grade. It has been enabled by new sensing technology with a particular type of neutron sensor.

What we have seen in early results has surprised us on the upside. We thought we would see a 5% uplift in head grade, but in fact we have seen about 20% – to qualify that, it’s in its early stages.

O’Neill says the bulk sorting trial at El Soldado has seen about a 20% uplift in head grade in its early stages

If you take this to its logical conclusion, you can see the day coming where you would cut the rock – no drilling and blasting – immediately sort the rock behind the machine cutting it and distribute said rock efficiently into its value in use; you don’t have stockpiles, you have plants sensing the material right through and adapting in real time to the change in mineralogy. I think there is another 3-4% increase in recovery in that whole process when we get it right.

Our sweet spot when we created FutureSmart Mining was always the orebody and processing plants, more so than automation (although that is part of the potential mix). That was different to a lot of the other players in the industry. This focus could lead to the development of different types of plants; ones that are flexible, more modular and you can plug and play.

IM: Do you see these type of neutron sensors being applied elsewhere across a mine site?

TO: Yes, through processing plants and conveyors. In fact, we’re preparing for this on conveyors right now.

What we have found with all this new technology is that, when we implement it, quite often another opportunity arrives. They end up playing off each other, and that is the context for the bulk sorting and coarse particle flotation.

IM: How have Anglo’s Open Forums played into these developments?

TO: We have held eight Open Forums on sustainability, processing, mining, exploration (two), future of work, energy and maintenance.

Out of those eight, I think we have got around 10,000 ideas from them. These forums have been specifically designed where only about a third of participants are from the mining industry, with the other two thirds coming from the best and brightest analogous industries we can tap into – automobile, oil & gas, food, construction, even Formula 1 racing and NASA.

The reality is that out of those 10,000 ideas, the success rate is about 1:1,000, but the one that makes it is quite often a game changer.

IM: Going back to the bulk sorters, am I right in thinking you plan to put these into Mogalakwena and Barro Alto too?

TO: The aim is to have them across our business. At El Soldado, the copper angle is very important. The technology – the sensing and using the data – is probably a touch more advanced in copper, but we are building one currently in our PGMs business at Mogalakwena and a bit behind that, but ready to be built, is one in nickel, yes.

In terms of our programme, you will see them spread across our business in the next, hopefully, 18 months.

IM: Where does your approach to advanced process control (APC) fit into the FutureSmart Mining platform?

TO: We want to have APC in some form across all our business by the end of this year. We have probably come from a little behind some of the other players in the industry, but we’re pushing it quite aggressively to give us the platform for data analytics. The upside we have seen just by putting the process control in so far has surprised me a bit – in a good way; power reductions, throughput, having this different level of control. All of it has been pleasing.

We spent about 12 months looking at the whole data analytics space to see how we were going to implement our solution. If you look around at the sector, everyone wants to be involved and profit share. If you add it all up, you could end up with not a lot of profitable pieces at the end. We have strategically chosen the pieces we think are important to us and our profit pool and have been happy to be a little looser on some of the non-core areas.

The other key plank to the APC is that we own the data. The reality is, in the new world, data is like a new orebody and we’re not willing to let go of that.

IM: Your Smart Energy project involving a haul truck powered on hydrogen has certainly caught the attention of the market: how did you come up with this innovation?

TO: Initially, we couldn’t make renewables work from an investment criteria perspective – it was always close, but never quite there. Donovan’s team then took an approach where they said, ‘forget the normal investment criteria. All we want to do is, make the business case wash its face.’ In doing so, it enabled them to oversize a renewable or photovoltaic energy source – the power plant – using that extra power to produce hydrogen and putting that hydrogen to use in the haulage fleet. Re-engineering the haulage fleet gave us the business outcomes we were looking for.

DW: These business cases bring you to temporary barriers. When you hit that temporary barrier, people normally stop, but what we said was, ‘OK, just assume it is not there and go forward.’ That brought the whole business case back again by looking at it differently again.

Anglo’s Smart Energy project is aiming to power a 300-t class truck with hydrogen fuel

IM: Where is this project likely to be situated within the group?

TO: We’re still not 100% fixed as the initial work will be done here (the UK). You are talking about quite specialist skills working with hydrogen.

When the system has gone past its initial testing, it will go to a site, probably in South Africa, but we are not 100% locked into that at this point.

IM: On the 12-month timeline you have given, when would you have to be on site?

TO: The infrastructure will be pre-built here in the UK. We’re effectively testing it here. In a way, the physical truck is the easy bit.

It’s going to be using a 300-t class truck. The guys have already done quite a bit of the detailed measuring and the design elements are well under way.

We’ve also taken the approach to use pre-approved technology, which Donovan can talk about.

DW: This minimises the risk on the first go and allows us to, later, tailor it. For example, if you don’t have a right sized fuel cell currently available off-the-shelf, you just use multiple standard-size fuel cells for now. Then, when you get into the final version you could tailor them into something more specific.

IM: On mechanised cutting, you recently mentioned the building of a “production-sized machine” for at least one of your mines in South Africa. Is this a variant of the Epiroc machine – the Rapid Mine Development System – you have been using at Twickenham?

TO: It’s the next generation of machines. It’s fair to say that, in the last 12 months, the technology has come to the point where we are confident it is viable.

What we’re looking for is a fundamental breakthrough where, for example, we can take the development rates up three or four times from what you would usually expect. That is what we’re chasing. It would involve some sort of pre-conditioning of the rock ahead of the cutting, but the cutting, itself, works.

For us, mechanised cutting is a real solution to some of the safety issues we have had on our plate. Regardless of whether it goes into South Africa or another underground mine, we see it as a key part of our future underground design and operation.

IM: What type of rock pre-conditioning is this likely to be?

TO: I think around the world, people are looking at electricity, microwave, laser, a whole suite of things. None of them have yet quite landed, but they all have potential.

IM: Where does haul truck automation fit into the pipeline for Anglo American?

TO: All the equipment we buy, going forward, will be autonomous-capable, which means we can run it in either format (manned or unmanned). You are then left with a number of decisions – have you got the design to retrofit automation? Is there a safety issue to be considered? Is there a weather issue to contend with? There are a whole series of gates that we’ll take it (automation projects) through.

It’s good to go back to P101 here. Where P100 is getting all of our key processes to world-class benchmarks, P101 is about establishing a new benchmark. By definition, if you get your operations to that point, the gap between that manned performance and autonomous performance is not that great.

Autonomy is part of our future armoury, but when and where and how, we’ll have to wait and see. For example, we are currently looking at the option of autonomous haulage trucks at one of our open-cut mines in Queensland.

When you look at our portfolio of operations, it’s often a more complex environment than when you are just working in the wide open Pilbara.